高二的数学说课稿
作为一名教学工作者,时常要开展说课稿准备工作,借助说课稿可以让教学工作更科学化。优秀的说课稿都具备一些什么特点呢?以下是小编帮大家整理的高二的数学说课稿,仅供参考,希望能够帮助到大家。
高二的数学说课稿1各位老师好:
我是户县二中的李敏,今天讲的课题是《平面向量的坐标的表示》,本节课是高中数学北师大版必修4第二章第4节的内容,下面我将从四个方面对本节课的教学设计来加以说明。
一、学情分析
本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。
二、高考的考点分析:
在历年高考试题中,平面向量占有重要地位,近几年更是有所加强。这些试题不仅平面向量的相关概念等基本知识,而且常考平面向量的运算;平面向量共线的条件;用坐标表示两个向量的夹角等知识的解题技能。考查学生在数学学习和研究过程中知识的迁移、融会,进而考查学生的学习潜能和数学素养,为考生展现其创新意识和发挥创造能力提高广阔的空间,相关题型经常在高考试卷里出现,而且经常以选择、填空、解答题的形式出现。
三、复习目标
1.会用坐标表示平面向量的加法、减法与数乘运算.
2.理解用坐标表示的平面向量共线的条件.
3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.
4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件.
教学重难点的确定与突破:
根据《20xx高考大纲》和对近几年高考试题的分析,我确定本节的教学重点为:平面向量的坐标表示及运算。难点为:平面向量坐标运算与表示的理解。我将引导学生通过复习指导,归纳概念与运算规律,模仿例题解决习题等过程来达到突破重难点。
四、说教法
根据本节课是复习课,我采用了“自学、指导、练习”的教学方法,即通过对知识点、考点的复习,围绕教学目标和重难点提出一系列精心设计的问题,在教师的指导下,用做题来复习和巩固旧知识点。
五、说学法
根据平时作业中的问题来看,学生会本节课遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算等方面。根据学情,所以我将指导通过“自学,探究,模仿”等过程完成本节课的学习。
六、说过程
(一) 知识梳理:
1.向量坐标的求法
(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.
(2)设A(x1,y1),B(x2,y2),则
=_________________
||=_______________
(二)平面向量坐标运算
1.向量加法、减法、数乘向量
设 =(x1,y1), =(x2,y2),则
+ = - = λ = .
2.向量平行的坐标表示
设 =(x1,y1), =(x2,y2),则 ∥ ________________.
(三)核心考点习题演练
考点1.平面向量的坐标运算
例1.已知A(-2,4),B(3,-1),C(-3,-4).设 (1)求3 + -3 ;
(2)求满足 =m +n 的实数m,n;
练:(20xx江苏,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)
(m,n∈R),则m-n的值为 .
考点2平面向量共线的坐标表示
例2:平面内给定三个向量 =(3,2), =(-1,2), =(4,1)
若( +k )∥(2 - ),求实数k的值;
练:(20xx,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ为实数,( +λ )∥ ,则λ= ( )
思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?
考点3平面向量数量积的坐标运算
例3“已知正方形ABCD的边长为1,点E是AB边上的动点,
则的值为 ; 的最大值为 .
【提示】解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.
练:(20xx,安徽,13)设 =(1,2), =(1,1), = +k .若 ⊥ ,则实数k的值等于( )
【思考】两非零向量 ⊥ 的充要条件: =0 .
考点4:平面向量模的坐标表示
例4:(20xx湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则的最大值为( )
A.6 B.7 C.8 D.9
练:(20xx,上海,12)
在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则 的取值范围是?
高二的数学说课稿21、教材结构分析
《圆的方程》安排在高中数学第二册(上)第七章第六节、圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用、圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用、
2、学情分析
圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难、另外学生在探究问题的能力,合作交流的意识等方面有待加强、
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:
3、教学目标
(1)知识目标:
①掌握圆的标准方程;
②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;
③利用圆的标准方程解决简单的实际问题、
(2)能力目标:
①进一步培养学生用代数方法研究几何问题的能力;
②加深对数形结合思想的理解和加强对待定系数法的运用;
③增强学生用数学的意识、
(3)情感目标:
①培养学 ……此处隐藏26892个字……的组合数的性质,对巩固二项式定理,建立相关知识之间的联系,进一步认识组合数、进行组合数的计算和变形都有重要的作用,对后续学习微分方程等也具有重要地位.
2.学情分析
知识结构:学生已学习两个计数原理和二项式定理,再让学生课前探究“杨辉三角”包含的规律,结合“杨辉三角”,并从函数的角度研究二项式系数的性质.
心理特征:高二的学生已经具备了一定的分析、探究问题的能力,恰时恰点的问题引导就能建立知识之间的相互联系,解决相关问题.
3.教学重点与难点
重点:体会用函数知识研究问题的方法,理解二项式系数的性质.
难点:结合函数图象,理解增减性与最大值时,根据n的奇偶性确定相应的分界点;利用赋值法证明二项式系数的性质.
关键:函数思想的渗透.
二、教学目标
1.通过课前组织学生开展“了解杨辉三角、探究与发现杨辉三角包含的规律”的学习活动,让学生感受我国古代数学成就及其数学美,激发学生的民族自豪感.
2.通过学生从函数的角度研究二项式系数的性质,建立知识的前后联系,体会用函数知识研究问题的方法,培养学生的观察能力和归纳推理能力.
3.通过体验“发现规律、寻找联系、探究证明、性质运用”的学习过程,使学生掌握二项式系数的一些性质,体会应用数形结合、特殊到一般进行归纳、赋值法等重要数学思想方法解决问题的“再创造”过程.
4.通过恰时恰点的问题引入、引申,采用学生课前自主探究、课上合作探究、课下延伸探究的学习方式,培养学生问题意识,提高学生思维能力,孕育学生创新精神,激发学生探索、研究我国古代数学的热情.
三、教法选择和学法指导
教法:问题引导、合作探究.
学法:从课前探究和课上展示中感知规律,结合“杨辉三角”和函数图象性质领悟性质,在探究证明性质中理解知识,螺旋上升地学习核心数学知识和渗透重要数学思想.
四、教学基本流程设计
五、教学过程
1. 展示成果话杨辉
课前开展学习活动:了解“杨辉三角”的历史背景、地位和作用,探究与发现“杨辉三角”包含的规律.
(1)学生从不同的角度畅谈“杨辉三角”,对它有何了解及认识.
(2)各小组展示探究与发现的成果——“杨辉三角”包含的一些规律.
【设计意图】引导学生开展课外学习,了解“杨辉三角”,探究与发现“杨辉三角”包含的规律,弘扬我国古代数学文化;展示探究与发现的杨辉三角的规律,为学习二项式系数的性质埋下伏笔.
2. 感知规律悟性质
通过课外学习,同学们观察发现了杨辉三角的一些规律,并且知道杨辉三角的第 行就是 展开式的二项式系数, 展开式的二项式系数具有杨辉三角同行中的规律——对称性和增减性与最大值.
【设计意图】寻找二项式系数与杨辉三角的关系,从而让学生理解二项式系数具有杨辉三角同行中的规律.
3. 联系旧知探新知
【问题提出】怎样证明 展开式的二项式系数具有对称性和增减性与最大值呢?
【问题探究】探究:(1) 展开式的二项式系数 , 可以看成是以 为自变量的函数 吗?它的定义域是什么?
(2)画出 和7时函数 的图象,并观察分析他们是否具有对称性和增减性与最大值.
(3)结合杨辉三角和所画函数图象说明或证明二项式系数的性质.
对称性:与首末两端“等距离”的两个二项式系数相等. .
增减性与最大值: ,所以 相对于 的增减情况由 决定.由 可知,当 时,二项式系数是逐渐增大的.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值.当 的偶数时,中间的一项取得最大值;当 是奇数时,中间的两项 , 相等,且同时取得最大值.
【设计意图】教师引导学生用函数思想探究二项式系数的性质,学生画图并观察分析图象性质;运用特殊到一般、数形结合的数学思想归纳二项式系数的性质,升华认识;通过分组讨论、自主探究、合作交流,说明或证明二项式系数的对称性和增减性与最大值,提高学生合作意识.
4. 合作交流议方法
【继续探究】问题: 展开式的各二项式系数的和是多少?
探究:(1)计算 展开式的二项式系数的和( =1,2,3,4,5,6).
(2)猜想 展开式的二项式系数的和.
(3)怎样证明你猜想的结论成立?
赋值法:已知 ,
令 ,则 .
这就是说, 的展开式的各个二项式系数的和等于 .
元集合子集的个数(两个计数原理).
分类计数原理:
分步计数原理: 个2相乘,即 .
所以 .
【问题拓展】你能求 吗?
在展开式 中,令 ,
则得 ,
即 ,所以 ,
在 的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.
【设计意图】通过学生归纳猜想各二项式系数的和,引导学生验证猜想结论是否正确;同时为了突破利用赋值法证明二项式系数性质的难点,引导学生从模型化的角度出发,多角度的分析问题、探究问题、解决问题,将学生思维推向高潮,既加深学生对前后知识的内在联系的理解,又从深度和广度上让学生感受数学知识的串联和呼应.
5. 反馈升华拨思路
练1. 的展开式中的第四项和第八项的二项式系数相等,则 等于 .
练2. 的展开式中前 项的二项式系数逐渐增大,后半部分逐渐减小,二项式系数取得最大值的是第 项.
练3.已知 ,求:
(1) ;(2) .
【设计意图】促进学生进一步掌握二项式系数的性质,学会用赋值法解决问题,促进其有意识的运用.
6. 悬念小结再求索
【课堂小结】 通过本节课的学习,你有什么收获和体会(从数学和生活的角度)?还有什么疑问吗?
【课堂延伸】今天同学们展示了一些杨辉三角的规律,但是作为我国古代数学重要成就之一的杨辉三角还有更多有趣的规律,相信大家一定有极高的热情和严谨的态度去探究与发现杨辉三角的奥妙之处.
【课外活动】(研究性学习)
活动主题:杨辉三角中的奥妙.
活动目标:探究与发现杨辉三角中的更多奥妙.
活动方案步骤:查阅资料,收集信息;独立思考,发现规律,猜想证明;合作探究,小组讨论,形成初步结论;与指导老师及其他小组成员交流展示;撰写研究性学习报告.
【设计意图】通过课堂的整理、总结与反思,使学生更好的掌握主干知识,体会探究过程中渗透的数学思想方法,再次感受我国古代数学成就,激励自己努力学习.“杨辉三角”还有很多有趣的规律,让学生带着问题走进课堂,带着疑问离开教室,培养学生自主研修的习惯,提高学生探究问题、解决问题的能力.设计研究性学习活动,诱发学生创造性的想象和推理.同时教会学生如何开展研究性学习.