小数性质说课稿
作为一无名无私奉献的教育工作者,常常要根据教学需要编写说课稿,借助说课稿可以让教学工作更科学化。快来参考说课稿是怎么写的吧!下面是小编帮大家整理的小数性质说课稿,仅供参考,欢迎大家阅读。
小数性质说课稿1一、说教材:
本节内容是小数四则计算的基础。根据小数的性质,可以化简小数,也可以不改变小数的大小,在小数末尾添加“0”将其改写成固定为数的小数,或者可以把整数改写成小数形式。其重点是让学生一步步由形象到抽象地总结概括出小数的性质。在充分了解了小数性质后再进行对其运用的学习,例如化简和改写。
二、说教法:
在教授小数性质的过程中,首先,我利用几个相等的数量关系,让学生慢慢迁移到小数,然后根据几个小数间的数量关系总结出规律。为进一步理解这层关系,又加一个验证——利用涂色表示小数再比较他们的大小,验证规律。完成后加一个小练习;在下来时小数性质的利用。这部分相对简单,介绍什么样的时候会需要进行化简和改写,然后举例说明,接着练习巩固。
三、说目标
1、让学生理解和掌握小数的性质,并能较熟练地熟练地运用这性质对小数进行化简和改写。
2、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,提高学生运用知识进行判断、推理的能力。
四、说重难点
掌握小数性质的含义
归纳小数性质的过程
五、说教学过程
一、导入
1、师:老师今天需要大家帮个忙:我这两天需要一个笔记本,于是去村里的两个小卖部转了转,发现这两家店对同一种本有不同的标价:左边这家标价是
2.5元,右边那家则是2.50元,大家帮我出出主意,我应该选择哪一家去买呢?
[都一样,任意选一家]
师:为什么?为什么2.5元末尾添个0大小不变呢?究竟可以添几个零呢?
这节课我们就来研究这一方面的知识。
【导入部分利用生活实际中的例子,并让学生来帮忙,这样可以激发学生的学习兴趣和探索欲望. 】
二、授新
1.猜想性质
板书三个“1”,让学生判断是相等的,接着在第二个1后面添写上一个0,在第三个1的后面添写上两个0,板书写成:1、10、100,提问:这三个数相等吗?(不相等)
你能想办法使它们相等吗?启发学生回答可以添上长度单位“米、分米、厘米”或“分米、厘米、毫米”就相等了。
板书:1分米=10厘米=100毫米。
思考:(1)你能把它们改用“米”作单位表示吗?
[0.1米0.10米0.100米]
(2)改写成用米作单位表示后,实际长度有没有变化?(没有)说明什么?(三个数量相等)
(3)仔细观察三个小数有什么变化?
根据学生回答总结:小数的末尾添零或去掉零,小数的大小不变。
【这部分利用整数的数量关系到加入长度单位后的关系一直引入到小数的数量关系,一步步使学生了解本节课的内容,并且通过认真观察后可以自己归纳总结出性质。】
2、验证猜想
为了验证我们的这个结论,我们再来做一个实验。
(1)出示做一做:比较0.30与0.3的大小
师:你认为这两个数的大小相等吗?(让学生先应用结论猜一猜)
(2)想一下你用什么办法来比较这两个数的大小呢?
出示课本做一做:在左图中涂出阴影部分表示0.3,右图中涂出阴影表示0.30,发现了两幅图什么相同,什么不同?
(份数不同,正方形的大小和阴影面积的大小相同)
这说明0.30与0.3相等,证明刚才这个结论是对的。
【在简单观察出性质以后,进一步通过之前的知识去进行验证,这样不仅可以让学生更深层次地理解知识,而且可以培养学生治学严谨的态度以及探究问题的一般步骤——先观察猜想,再进行验证。】
师:那如果我们现在说“小数后面添上零或去掉零,小数的大小不变”这句话还对吗?[不对]那如果是“小数点后面添上零或去掉零,小数的大小不变”呢?
[不对]分别举例说明。【这一步主要使学生确切地理解添上零或去掉零的位置,一定要在小数的末尾】
师:那如果我们现在说“小数末尾添上零或去掉零,小数的意义不变”这句话还对吗?【这一步主要使学生确切地理解添上零或去掉零后,一定是小数的大小不变,而意义有很大的不同】
师:那整数有这个性质吗?也就是我们可以说"整数末尾添上零或去掉零,大小不变”吗?【强调出小数与整数的区别】
判断练习。
下面的数中,哪些“0”可以去掉?
3.9 0.300 1.8000 500
5.780 0.0040 102.020 60.06
3、小数性质的利用
(1)根据小数的性质,可以对小数进行化简。(理解化简就是将其简单化)当遇到小数末尾有“0”的时侯,例如,0.30,一般可以去掉末尾的“0”,把小数化简。(0.30=0.3)
化简下面各小数:
0.70 105.0900 2.900 0.50600
0.090 10.830 12.000 0.070
(2)师:有时根据表示意义的需要,可以在小数的末尾添上0;(例如:0.3→0.30)
还可以在整数的个位右下角点上小数点,再添上0,把整数写成小数的形式。比如:我们在商场里看到的2元=2.00元,2.5元=2.50元
出示:不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数,怎样改写?
提醒:把整数改写成小数形式,在整数的个位右下角点上小数点,再添上“0”。
三、巩固深化
1、下面的每组数中,哪些零可以去掉,用斜杠划掉
(1)3.09 0.300 1.8000 5.00
(2)0.0004 12.002 60.06 500
(3)0.090 12.00001 0.50605060 30.0
2、化简下列小数
102.020 54.300 110.030 200.0300
3、判断题。(打“√”,错的打“×”)
(1)0.080=0.8()
(2)4.01=4.100()
(3)6角=0.60元()
(4)30=30.00()
(5)小数点后面添上“0”或去掉“0”,小数的大小不变。
4、学校小卖部进了一批冷饮,你能帮忙设计一下价格标签吗?(要求都写成两位小数)
盐水棒冰每支5角
随便每支1元5角< ……此处隐藏21269个字……0例1、2。
小数的性质是一节概念教学课,是在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它是小数四则计算的基础。根据小数的性质可以把末尾有零的小数化简,也可以不改变小数的大小,把一个数改写成指定位数的小数。
2、教材的重点和难点:
掌握小数性质的含义是教学的重点,理解小数性质归纳的过程是教学的难点。
3、教学目标:
(1)利用知识的迁移规律,让学生在自主探究、合作交流中理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
(2)让学生进一步体验教学与日常生活的密切联系,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,以主动参与数学活动。
(3)在教学中渗透事物是普遍联系和相互转化的辩证唯物主义观点。
二、说教法
1、通过直观、图示,让学生充分感知,经过比较归纳,最后概括出小数的性质;从而使学生的思维从形象思维过渡到抽象思维。
2、采用引探教学法,依据学生认知规律对例题进行加工调整,在探求知识规律处适当给予启发、引导,以调动学生学习的自觉性、积极性,从而达到感知新知,概括新知,应用新知,巩固和深化新知的目的。
三、说学法
通过本节教学,要使学生掌握一些基本的学习方法:
1、学会通过比较、归纳,最后概括出一类事物的本质属性。
2、引导学生自主探究,培养他们用已有知识解决新问题的能力。
3、通过指导独立看书,汇报交流活动,培养学生的自学能力和合作交流的好习惯。
四、说教学程序
(一)情景导入激趣揭题
(课件出示)唐僧师徒一起去西天取经,有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.1米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了注有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位徒弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。
同学们,你们知道为什么师傅对悟空的话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥秘了”。(板书:小数的性质)
这样的设汁,旨在把枯燥的数学知识贯穿在小学生喜闻乐道的故事中,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。
(二)调整例题探索新知
1、教学例1
(1)出示米尺投影图
(2)引导学生观察米尺图,提问:
A、0.1米是几分之几米(1/10米)?用整数表示就是多少分米?(1分米)
B、0.10O米是几个几分之1米?(10个1/100米)1/100米用整数表示是几厘米(1厘米)?10个1/100米就是多少毫米?(10厘米)
C、0.100米就是几个几分之1米(100个1/1000米)?1/1000米用整数表示是几毫米(1毫米)?那么100个1/1000米就是多少毫米?(100毫米)
结合学生回答,例1图上的标注应改为:
0.1米是1/10米,就是1分米
0.10米是10个1/100米,就是10厘米
0.100米就是10个1/1000米,就是100毫米
因为1分米=10厘米=100毫米
所以0.1米=0.10米=0.100米
这样,学生根据小数的意义,主动从“0.1米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。《数学课程标准)强调:数学活动必须建立在学生的认知发展水平和已有的知识经验基础上,这样教学,也正是使本节课牢牢地扎根于小数意义的基础上,是小数意义的运用,而不是简单的重复,因而是有意义学习。
接着教师指着“0.1米=0.10米=0.100米"这个等式,并标上思考符号“→”,先让学生从左往右观察、比较,提问三个小数0.1、0.10、0.100有什么不同?(小数的位数不同,但在0.1米的末尾添上一个“0”或两个“0”,表示的实际长度不变,板书在小数的末尾添上0,小数的大小不变)。再标出思考箭头“→”,让学生从右往左观察,发现什么规律,补充板书小数的末尾去掉“0”。
这样教学,把静态的知识结论转化动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括事物本质属性的能力。
2、教学例2
在例1的学习过程中,学生已经初步掌握了探求新知的方法。所以例2的教学,教师出示自学提纲,提倡学生先独立看书,然后小组讨论,汇报交流:
(1)左图把1个正方形平均分成几份?阴影分用分数怎样表示?用小数怎样表示?
(2)右图把同样的正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?
(3)从左图到右图有什么变了,什么没变?(份数变了,正方形的大小和阴影面积的大小没变)
(4)怎样比较0.30和0.3的大小?(0.30是30个1/100,0.3是3个1/10,因为10个1/100是1个1/10,30个1/100也就是31/10,所以两个小数的大小相等)。
这样使学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的,同时,通过看书交流,培养了学生的自学能力和合作意识。通过两道例题,让学生进一步掌握规律,全面概括出小数的性质。
3、呼应课始,揭示奥秘:由于悟空掌握了小数的性质,所以他面对两位师弟的争执说:“无论哪一袋都一样”。
4、联系生活,再现新知:还有同学们在商场看到货物的标价为2.50元、3.00元,这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。
(三)巩固深化拓展思维
这是教学中不可缺少的环节,这一阶段是学生巩固知识,形成技能,技巧,发展智力的重要过程。在这一阶段,特别是抓住学生的求胜心理进行了练习、要进一步激发学生的学习兴趣,确保学习任务的圆满完成。
1、判断下面小数哪些0去掉是对的,哪些0去掉是错的?
8.0808.0880.0080.80800
2、判断下面各组两个数是否相等?为什么?
0.25和0.2500、0.25和0.205、0.7和0.07、3和300、3和3.00
3、闭眼听判:
“小数点的末尾添上‘0’或去掉“0’,小数大小不变”这种说法对吗?为什么?
这样设计、让学生对新知识的各种误解进行辨析、判断,使得所学知识真正转化为能力。
(四)全课小结
略