高中数学教学设计

时间:2024-02-24 13:54:04
高中数学教学设计

高中数学教学设计

作为一位杰出的老师,可能需要进行教学设计编写工作,借助教学设计可以更好地组织教学活动。写教学设计需要注意哪些格式呢?以下是小编为大家整理的高中数学教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

高中数学教学设计1

一、教材分析

数学归纳法是一种重要的数学证明方法,在高中数学内容中占有重要的地位,其中体现的数学思想方法对学生进一步学习数学、领悟数学思想至关重要。本课是数学归纳法的第一节课,前面学生对等差数列、数列求和、二项式定理等知识有较全面的把握和较深入的理解,初步掌握了由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法,这是研究数学问题,猜想或发现数学规律的重要手段。但是,由有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为一种论证方法。因此,在不完全归纳法的基础上,必须进一步学习严谨的科学的论证方法——数学归纳法,这是促进学生从有限思维发展到无限思维的一个重要环节,同时本节内容又是培养学生严密的推理能力、训练学生的抽象思维能力、体验数学内在美的好素材。

二、教学目标

学生通过数列等相关知识的学习,已经基本掌握了不完全归纳法,已经由一定的观察、归纳、猜想能力。

根据教学内容特点和教学大纲,结合学生实际而制定以下教学目标:

1.知识目标

(1)了解由有限多个特殊事例得出的一般结论不一定正确。

(2)初步理解数学归纳法原理。

(3)能以递推思想为指导,理解数学归纳法证明数学命题的两个步骤一个结论。

(4)会用数学归纳法证明与正整数相关的简单的恒等式。

2.能力目标

(1)通过对数学归纳法的学习,使学生初步掌握观察、归纳、猜想、分析能力和严密的逻辑推理能力。

(2)在学习中培养学生大胆猜想,小心求证的辨证思维素质以及发现问题、提出问题的意识和数学交流的能力。

3.情感目标

(1)通过对数学归纳法原理的探究,亲历知识的构建过程,领悟其中所蕴含的数学思想和辨正唯物主义观点。

(2)体验探索中挫折的艰辛和成功的快乐,感悟数学的内在美,激发学生学习热情,使学生喜欢数学。

(3)学生通过置疑与探究,初步形成正确的数学观,创新意识和严谨的科学精神。

三、教学重点与难点

1.教学重点

借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些与正整数有关的简单恒等式,特别要注意递推步骤中归纳假设的运用和恒等变换的运用。

2.教学难点

(1)如何理解数学归纳法证题的严密性和有效性。

(2)递推步骤中如何利用归纳假设,即如何利用假设证明当时结论正确。

四、教学方法

本节课采用交往性教学方法,以学生及其发展为本,一切从学生出发。在教师组织启发下,通过创设问题情境,激发学习欲望。师生之间、学生之间共同探究多米诺骨牌倒下的原理,并类比多米诺骨牌倒下的原理,探究数学归纳法的原理、步骤;培养学生归纳、类比推理的能力,进而应用数学归纳法,证明一些与正整数n有关的简单数学命题;提高学生的应用能力,分析问题、解决问题的能力。既重视教师的组织引导,又强调学生的主体性、主动性、交流性和合作性。

五、教学过程

(一)创设情境,提出问题

情境一:根据观察某学校第一个到校的女同学,第二个到校的也是女同学,第三个到校的还是女同学,于是得出:这所学校的学生全部是女同学。

情境二:平面内三角形内角和是,四边形内角和是,五边形内角和是,于是得出:凸边形内角和是。

情境三:数列的通项公式为,可以求得,,,,于是猜想出数列的通项公式为。

结论:运用有限多个特殊事例得出的一般性结论,即不完全归纳法不一定正确。因此它不

能作为一种论证的方法。

提出问题:如何寻找一个科学有效的方法证明结论的正确性呢?我们本节课所要学习的数

学归纳法就是解决这一问题的方法之一。

(二)实验演示,探索解决问题的方法

1.几何画板演示动画多米诺骨牌游戏,师生共同探讨:要让这些骨牌全部倒下,必

须具备那些条件呢?(学生可以讨论,加以教师点拨)

①第一块骨牌必须倒下。

②两块连续的骨牌,当前一块倒下,后面一块必须倒下。

(启发学生转换成数学符号语言:当第块倒下,则第块必须倒下)

教师总结:数学归纳法的原理就如同多米诺骨牌一样。

2.学生类比多米诺骨牌原理,探究出证明有关正整数命题的方法,从而导出本课的重心:数学归纳法的原理及其证明的两个步骤。(给学生思考的时间,教师提问,学生回答,教师补充完善,对学生的回答给予肯定和鼓励)

数学归纳法公理:(板书)

(1)(递推基础)当取第一个值(例如等)结论正确;

(2)(递推归纳)假设当时结论正确;(归纳假设)

证明当时结论也正确。(归纳证明)

那么,命题对于从开始的所有正整数都成立。

教师总结:步骤(1)是数学归纳法的基础,步骤(2)建立了递推过程,两者缺一不

可,这就是数学归纳法。

(三)迁移应用,理解升华

例1:用数学归纳法证明:等差数列中,为首项,为公差,则通项公式为.①

选题意图:让学生注意:①数学归纳法是一种完全归纳的证明方法,它适用于与正整数有关的问题;

②两个步骤,一个结论缺一不可,否则结论不成立;

③在证明递推步骤时,必须使用归纳假设,必须进行恒等变换。

此时学生心中已有一个初步的证明模式,教师应该规范板书,给学生提供一个示范。

证明:(1)当时,等式左边,等式右边,等式①成立.

(2)假设当时等式①成立,即有

那么,当时,有所以当时等式①也成立。

根据(1)和(2),可知对任何,等式①都成立。

例2:用数学归纳法证明:当时

选题意图:通过师生共同活动,使学生进一步熟悉数学归纳法证题的两个步骤和一个结论。

例3:用数学归纳法证明:当时

选题意图:①进一步让学生理解数学归纳法的严密性和合理性,从而从感性认识上升为理性认识;

②掌握从到时等式左边的变化情况,合理的进行添项、拆项、合并项等。

(四)反馈练习,巩固提高

课堂练习:用数学归纳法证明:当时

(练习让学生独立完成,上黑板板演,要求书写工整,步骤完整,表述清楚,如果发现学

生证明过程中的 ……此处隐藏27359个字……感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师(视为线)与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示)。

[设计意图:设置这样动手实践的情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。]

3、探究思考

(1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:①平面外一条线②我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为平面内一条直线③这两条直线平行

(2)如果平面外的直线a与平面?内的一条直线b平行,那么直线a与平面?平行吗?

4、归纳确认:(多媒体幻灯片演示)

直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。

简单概括:(内外)线线平行?线面平行a符号表示:ba||? a||b??

温馨提示:

作用:判定或证明线面平行。

关键:在平面内找(或作)出一条直线与面外的直线平行。

思想:空间问题转化为平面问题

(三)定理运用,问题探究(多媒体幻灯片演示)

1、想一想:

(1)判断下列命题的真假?说明理由:

①如果一条直线不在平面内,则这条直线就与平面平行()

②过直线外一点可以作无数个平面与这条直线平行( )

③一直线上有二个点到平面的距离相等,则这条直线与平面平行( )

(2)若直线a与平面?内无数条直线平行,则a与?的位置关系是( ) a、a ||? b、a?? c、a ||?或a?? d、a?? [学情预设:设计这组问题目的是强调定理中三个条件的重要性,同时预设(1)中的③学生可能认为正确的,这样就无法达到老师的预设与生成的目的,这时教师要引导学生思考,让学生想象的空间更广阔些。此外教师可用预先准备好的羊毛针与泡沫板进行演示,让羊毛针穿过泡沫板以举不平行的反例,如果有的学生空间想象力强,能按老师的要求生成正确的结果则就由个别学生进行演示。]

2、作一作:

设a、b是二异面直线,则过a、b外一点p且与a、b都平行的平面存在吗?若存在请画出平面,不存在说明理由?

先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程。

[设计意图:这是一道动手操作的问题,不仅是为了拓展加深对定理的认识,更重要的是培养学生空间感与思维的严谨性。]

3、证一证:

例1(见课本60页例1):已知空间四边形abcd中,e、f分别是ab、ad的中点,求证:ef ||平面bcd。

变式一:空间四边形abcd中,e、f、g、h分别是边ab、bc、cd、da中点,连结ef、fg、gh、he、ac、bd请分别找出图中满足线面平行位置关系的所有情况。(共6组线面平行)变式二:在变式一的图中如作pq?ef,使p点在线段ae上、q点在线段fc上,连结ph、qg,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形efgh、pqgh分别是怎样的四边形,说明理由。

[设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。]例2:如图,在正方体abcd—a1b1c1d1中,e、f分别是棱bc与c1d1中点,求证:ef ||平面bdd1b1分析:根据判定定理必须在平

面bdd1b1内找(作)一条线与ef平行,联想到中点问题找中点解决的方法,可以取bd或b1d1中点而证之。

思路一:取bd中点g连d1g、eg,可证d1gef为平行四边形。

思路二:取d1b1中点h连hb、hf,可证hfeb为平行四边形。

[知识链接:根据空间问题平面化的思想,因此把找空间平行直线问题转化为找平行四边形或三角形中位线问题,这样就自然想到了找中点。平行问题找中点解决是个好途径好方法。这种思想方法是解决立几论证平行问题,培养逻辑思维能力的重要思想方法]

4、练一练:

练习1:见课本6页练习1、2

练习2:将两个全等的正方形abcd和abef拼在一起,设m、n分别为ac、bf中点,求证:mn ||平面bce。

变式:若将练习2中m、n改为ac、bf分点且am = fn,试问结论仍成立吗?试证之。

[设计意图:设计这组练习,目的是为了巩固与深化定理的运用,特别是通过练习2及其变式的训练,让学生能在复杂的图形中去识图,去寻找分析问题、解决问题的途径与方法,以达到逐步培养空间感与逻辑思维能力。]

(四)总结

先由学生口头总结,然后教师归纳总结(由多媒体幻灯片展示):

1、线面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线与这个平面平行。

2、定理的符号表示:ba||? a||b??简述:(内外)线线平行则线面平行

3、定理运用的关键是找(作)面内的线与面外的线平行,途径有:取中点利用平行四边形或三角形中位线性质等。

七、教学反思

本节“直线与平面平行的判定”是学生学习空间位置关系的判定与性质的第一节课,也是学生开始学习立几演泽推理论述的思维方式方法,因此本节课学习对发展学生的空间观念和逻辑思维能力是非常重要的。

本节课的设计遵循“直观感知——操作确认——思辩论证”的认识过程,注重引导学生通过观察、操作交流、讨论、有条理的思考和推理等活动,从多角度认识直线和平面平行的判定方法,让学生通过自主探索、合作交流,进一步认识和掌握空间图形的性质,积累数学活动的经验,发展合情推理、发展空间观念与推理能力。

本节课的设计注重训练学生准确表达数学符号语言、文字语言及图形语言,加强各种语言的互译。比如上课开始时的复习引入,让学生用三种语言的表达,动手实践、定理探求过程以及定理描述也注重三种语言的表达,对例题的讲解与分析也注意指导学生三种语言的表达。

本节课对定理的探求与认识过程的设计始终贯彻直观在先,感知在先,学自己身边的数学,感知生活中包涵的数学现象与数学原理,体验数学即生活的道理,比如让学生举生活中能感知线面平行的例子,学生会举出日光灯与天花板,电线杆与墙面,转动的门等等,同时老师的举例也很贴进生活,如老师直立时与四周墙面平行,而向前、向后倾斜则只与左右墙面平行,而向左、右倾斜则与前后黑板面平行。然后引导学生从中抽象概括出定理。

《高中数学教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式