式与方程教学设计

时间:2022-09-05 23:52:56
式与方程教学设计

式与方程教学设计

作为一名教师,总归要编写教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么教学设计应该怎么写才合适呢?以下是小编为大家整理的式与方程教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

式与方程教学设计1

教学内容:教科书92页“整理与反思”,完成“练习与实践”第1~6题。

教学目标:

1.使学生进一步体会方程的意义和思想,会用等式的性质解一些简单的方程。

2.使学生进一步认识用字母表示数及其作用,培养学生抽象,概括的能力。

教学重点:

能正确地用含有字母的式子表示数量及数量关系、计算公式。

教学难点:

会用等式的性质解一些简单的方程。

教学准备:多媒体

教学过程:

一、整理与反思

今天要复习解简易方程,(板书课题)通过复习,要进一步明白字母可以表示数量、数量关系和计算公式,能正确地解简易方程。

师:你能自己举出一些用字母表示数的例子吗?

长方形的周长C=2(a+b)

加法交换率a+b=b+a……

师:什么叫方程?方程与等式有什么联系和区别?

(1)教师引导:含有字母的等式叫方程。

(2)表示相等的式子叫等式。方程是含有字母的等式。

师长:你知道等式有哪些性质?举例说一说。

强调:0除外

教师归纳:等式的两边同时加、减、乘、除以同一个数(除数不为0),等式的两边相等。

二、练习与实践

1.在括号里写出含有字母的式子

(1)一种贺卡的单价是a元,小英买5张这样的贺卡,用去()元;小明买n张这样的贺卡,付出10元,应找回()元。

(2)每千瓦时电费0.52元,每立方米水费2元。小明家本月用了a千瓦时电和b立方米水,一共要付水费()元。

2.第2题

(1)完成后交流,并让学生说出解每个方程的过程,分别运用了等式的哪些性质?

(2)说说解答每题时应注意什么?

3.电视节目现在能收看56套节目,比开通有线电视前的5倍少4套,开通有线电视前只能收看几套节目?

学生交流、完成

4.京沪高速公路全长1262千米。两辆汽车同时从北京和上海出发,相向而行,每小时分别行120千米和95千米。用计算器算一算,大约经过几小时两车相遇?(得数保留整数)

学生交流、完成

5.长江三峡水库总库容大约是黄河小浪底水库的3倍,黄河小浪底水库的总库容比长江三峡水库少260亿立方米。黄河小浪底水库的总库容是多少亿立方米?长江三峡呢?

学生交流、完成

4.第6题

强调:根据题目的情况,合理选择方法,列算式或列方程

三、小结

通过今天的复习,你对数学知识与日常生活的联系有了哪些新的认识?

学生交流

四、作业

完成《练习与测试》相关作业。

式与方程教学设计2

教学内容:

教学目标:

1、帮助学生整理式与方程的知识体系,学会用字母表示数,体会用字母表示的简洁性。

2、理解方程的含义,会熟练地解简易方程,初步沟通算式、代数式、具体数量之间的关系。

3、进一步理解基本的数量关系,会根据实际情况选用方程解决问题,提高学生的方程及代数意识。

教学重点:明确字母表示数的意义和作用;会灵活的用方程解答实际问题。

教学难点:找等量关系式,用方程解决实际问题。

教学过程:

一、谈话引入,揭示课题

今天我们来复习“式与方程”。看到这课题,你想到了哪些知识?(用字母表示数,解方程,用方程解决问题)

二、复习用字母表示数

1。用字母表示数。

①1,2,3,4,5,6……可以用哪个数来表示?x

②4,8,12,16,20,24……可以用哪个数来表示?4x

师:4x与x有什么关系呢?4x表示x的4倍

“2x+4”呢?“x÷2—4”呢?

小结:我们要弄懂含有字母式子的含义,含有字母的式子可以表示一个数,而这个数与这个字母有着一定关系。

2。做一做。字母a来表示一个数,你能根据不同关系的表述分别写出另一个数吗?

一个数另一个数

a比a多2的数a+2

比a少2的数a—2

2个a相加是多少?2a

2个a相乘是多少?a2

a的2倍2a

a的一半a÷2

学生独立完成,汇报结果。

2a与a2有什么区别?用字母表示数要注意什么?

三、复习方程与解方程

(1)如果黑板上的三个式子:“4x”“2x+4”“x÷2—4”的结果都是60,那么这些式子就都等于多少呢?

像这样的等式数学上叫做什么?(方程)

什么叫方程?(含有未知数的等式叫方程)

(2)学生独立练习解上述三个方程,完成后校对讲评。

四、复习用方程解决问题

1。根据上述三个方程,编解决问题。

(1)根据4x=60,你想到了什么数学问题?

①小明骑自行车4小时行了60千米,平均每小时行了多少千米?

解:设平均每小时行了x千米。4x=60

②一个正方形的周长是60厘米,它的边长是多少?

解:设它的边长为x厘米。4x=60

师:列方程的依据是什么?

(2)根据2x+4=60,你想到了什么数学问题?

①甲筐有苹果60千克,,乙筐有苹果多少千克?

解:设乙筐有苹果x千克。列出方程是:2x+4=60。

师:你能根据方程,补上相应的条件吗?(甲筐是乙筐的2倍还多4千克)

②如果要列出x÷2—4=60的方程,可以把哪句话改一改?怎么改?

“甲筐是乙筐的2倍还多4千克”改为“甲筐是乙筐的一半还少4千克”

师:刚刚补上的两个条件,正是在列方程时要用到的关键句,知道什么叫关键句吗?

师:从这句话中可以找到数量关系,列出方程。

2。复习用方程解决问题的一般步骤。

小明和小刚两家相距425米。两人同时从家出发,经过2。5分钟后能在途中相遇。小明每分钟走75米.小刚每分钟走多少米?(用方程解答)

(1)学生独立解答,指明板演,集体校对。

……此处隐藏2527个字……列方程解决实际问题(教科书五下P8例7)。

四、教学过程

(一)用字母表示数

1.你能举出一些用字母表示数的例子吗?先小组交流,后全班交流。

2.教师指出:在具体情境中,用字母表示数总是有一定范围的。

3.用字母表示数有什么好处?

4.完成“练习与实践”第1题:学生独立完成后全班交流,说式子和数量关系。

(二)方程与等式

1.举例说说什么是方程?方程与等式有什么联系和区别?

2.填一填:在下面的集合圈里填入“等式”和“方程”。

3.举例说说什么是等式的性质?你怎样理解“同时”、“同一个数”、“0除外”这些词的?利用等式的性质可以干什么?

4.说一说“方程的解”与“解方程”有什么区别?

5.完成“练习与实践”第2题:学生独立完成,同时指名几人板演,后集体订正,并指名说说解方程的依据。教师要强调把方程解好后一定要养成检验的习惯。

(三)列方程解决实际问题

1.列方程解决实际问题的一般步骤有哪些?你认为最关键的是哪一步?

2.说出下面各题中数量之间的相等关系。

(1)养禽场一共养鸡鸭600只。

(2)红花比黄花少25朵。

(3)参加航模组的人数是参加美术组的3倍。

(4)花金鱼比黑金鱼的1.2倍还多8条。

(5)单价、数量、总价。

(6)速度、时间、路程。

(7)工作效率、工作时间、工作总量。

3.完成“练习与实践”第3~6题。

完成第3~5题:学生说数量关系和解法后,集体订正。

完成第6题:课前让学生了解自己穿的鞋的码数和厘米数,课上完成时出示码数和厘米数之间的换算关系后,让学生验证这种换算关系正确与否,后引导学生分析知道厘米数求码数与知道码数求厘米数通常应各采用什么方法解,再让学生独立解答填表,最后全班交流。

习题精编

一、在()里写出含有字母的式子。

(1)3个x相加的和(),3个x相乘的积()。

(2)一批煤有a吨,烧了8天,平均每天烧m吨,还剩()吨。

(3)一个圆柱底面半径为r,高为h,它的体积v=()。

(4)松树高y米,杨树比松树的34少5米,杨树高()米。

(5)小明今年a岁,小华今年b岁,经过x年后,两人相差()岁。

二、解方程。

1.25x÷0.25=48.5+65%x=1534x-13x=59

三、判断。

(1)方程一定是等式,等式一定是方程。()

(2)方程两边同时乘或除以同一个数,所得结果仍然是方程。()

(3)畜牧场养了600头肉牛,比奶牛的2倍多80头,求奶牛有多少头?可以列式为600÷2+80。()

四、选择。

1、下面的式子中,()是方程。

A、25xB、15-3=12C、6x+1=6D、4x+7<9

2、x=3是下面方程()的解。

A、2x+9=15B、3x=4.5C、18.8÷x=4D、3x÷2=18

式与方程教学设计6

教学内容:

义务教育课程标准实验教科书第12册92--93页“练习与实践”3-9

教学内容:

义务教育课程标准实验教科书第12册92--93页“练习与实践”3-9

教学目标:

1、使学生进一步掌握列方程解应用题的步骤,明确其中的关键是找出数量之间的相等关系,能根据题意正确地列出方程解答两、三步计算的应用题.

2、使学生能根据应用题的特点选择恰当的方法来解答。

3、进一步培养学生分析数量关系的能力,发展学生的思维。

教学难点:

根据题目的具体情况选择合理的解题方法

设计理念:

通过不同题型的训练使学生进一步掌握列方程解决问题的基本方法,而且能使学生进一步体会到方程是描述数量关系的一种常用和有效的数学模型,列方程解决问题具有独特的方法价值。激发学生探索数学规律的兴趣,有利于学生进一步感受到用字母表示数以及列方程解决问题的优越性。

教学步骤、教师活动、学生活动

一、揭示课题

1、引入课题。

我们已经会根据几个数之间的等量关系列出方程。今天这节课,我们着重复习根据应用题数量之间的相等关系,列方程解答,(板书课题)通过复习,要能根据题意正确地列方程来解答应用题。同时还要能根据数量关系的特点,灵活地选择算术方法或用方程来解答应用题。

2、复习解题步骤。

提问:我们过去列方程解应用题的步骤是怎样的?

板书:(1)审题,用x表示未知数;

(2)找等量关系,列方程;

(3)解方程;

(4)检验,写答案。

你认为其中最关键的是哪一步?为什么?

指出:列方程解应用题要按照解题步骤进行,其中最关键的一步是找等量关系列方程。(板书:关键:找等量关系)因为方程是根据等量关系列出来的,只有等量关系找正确,对照等量关系列出的方程才正确。

学生个别口答后再整理

二、整理与反思1、电视节目现在能收看56套节目,比开通有线电视前的5倍少4套,开通有线电视前只能收看几套节目?

2、京沪高速公路全长1262千米。两辆汽车同时从北京和上海出发,相向而行,每小时分别行120千米和95千米。用计算器算一算,大约经过几小时两车相遇?(得数保留整数)

3、长江三峡水库总库容大约是黄河小浪底水库的3倍,黄河小浪底水库的总库容比长江三峡水库少260亿立方米。黄河小浪底水库的总库容是多少亿立方米?长江三峡呢?

4、完成93页第6题

(1)理解鞋的码数与厘米数的换算关系

(2)进行码数与厘米数的换算

强调:根据题目的情况,合理选择方法,列算式或列方程

5、完成93页的第7题

理解“一种药品降价10%”的含义

6、完成93页的第8题

强调:(1)两种衬衫的原价相同,由于打的折扣不同,所以现价不同。(2)108原是这两中衬衫现价的和。

7、完成93页的第9题学生独立解答,交流说说1-3每道题中数量之间的相等关系,以及怎样列方程,每个方程各是怎样解的

学生独立完成,指名说说思考过程

指名板演,集体交流,说说解题思路

两人一组,分组开展活动,适时互换角色。

三、全课总结

通过这节课的复习,你有了哪些新的认识?还有哪些疑问?

学生互说体会

四、拓展延伸

甲、乙、丙三个数的和是255,已知甲数除以乙数,乙数除以丙数都商5余1,甲、乙丙各是多少?学生课后交流、探索

《式与方程教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式