比例的意义和基本性质教学设计

时间:2023-09-07 08:00:10
比例的意义和基本性质教学设计

比例的意义和基本性质教学设计

作为一位杰出的老师,时常需要准备好教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。那么什么样的教学设计才是好的呢?下面是小编整理的比例的意义和基本性质教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

比例的意义和基本性质教学设计1

教学目标:

1、在具体的情境中经历比例的形成过程,理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。

2、通过自主探索发现比例的基本性质,能运用比例的性质进行判断。

3、通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

4、通过探索国旗中蕴含的数学知识,渗透爱国主义教育。

教学重点:理解比例的意义和性质。

教学难点:应用比例的意义和性质判断两个比能否组成比例。

教学准备:多媒体课件一套。

教学过程:

一、渗透情感,导入新课

1、媒体出示国旗画面,学生观察,激发爱国情操。

天安门升国旗仪式

校园升旗仪式

教室场景

签约仪式

师:四幅不同的场景,都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽是多少吗?

2、媒体出示国旗的长和宽,并提出问题。

天安门升国旗仪式:长5米,宽10/3米。

校园升旗仪式:长2.4米,宽1.6米。

教室场景:长60厘米,宽40厘米。

签约仪式:长15厘米,宽10厘米。

师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?

师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?

3、学生探索,发现问题。

师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?

学生自主观察、计算,发现国旗的长和宽的比值相等。

二、认识比例,发现特征

1、引出比例,理解比例的意义。

媒体出示操场上的国旗和教室里国旗长和宽。学生计算出两面国旗的长和宽的比值。

并板书:2.4∶1.6 =3/2

60∶40=3/2

师指出这两面国旗的长和宽的比值相等,中间可以用等号连接,并指出像这样的式子叫比例。

并板书:2.4∶1.6 =60∶40

2、认识比例,知道比例各项的名称。

⑴学生照样子利用主题图仿写一个比例,并说出自己是怎样写出来的。

⑵学生尝试说说什么叫比例。

⑶教学比例的各部分的名称。

自学课本第34页的第一段话,初步认识比例各项的名称。

出示其中一个比例,指出比例各部分的名称。

学生说说自己写的比例的各项的名称。

⑷教学比例的另一种写法,学生尝试将自己写的比例换一种写法。

⑸判断下列几个比能不能组成比例。

媒体出示,学生判断并说出理由。

下面哪组中的两个比可以组成比例,把组成的比例写出来。

⑴6∶10和9∶15 ⑵20∶5和1∶4

⑶1/2∶1/3和6∶4 ⑷0.6∶0.2和3/4∶1/4

⑹思考:比和比例有什么联系和区别?

学生自主思考,集体交流,了解比例和比的联系和区别。

3、自主练习,发现比例的基本性质。

⑴媒体出示

8∶4=()∶() 15:10=()∶4 12∶()=()∶5

媒体依次出示三道题,学生独立完成并思考:为什么这样填?你有其它的发现吗?

⑵师提出问题:在一个比例中,它们项有什么特点?

⑶学生观察以上式子,自主思考,尝试发现比例的基本性质。

⑷集体交流,发现性质。

学生自主交流,发现:在比例里,两个外项的积等于两个内项的积。

⑸观察自己写的其它几个比例,验证发现。

⑹小结性质

学生尝试用完整的数学语言说一说自己的发现。

媒体出示学生的发现,教师指出这就是比例的基本性质。

三、巩固练习,提高认识

1、基本练习

判断,媒体出示

应用比例的基本性质,判断下面哪组中的两个比可以组成比例

⑴6∶3和8∶5 ⑵0.2∶2.5和4∶50

⑶1/3∶1/6和1/2∶1/4 ⑷1.2∶3/4和4/5∶5

2、拓展练习。

比一比,谁写得多。

在1、2、3、4、5、6、7、8、9这九个数中,任选四个数组成比例,并说说是怎样写出来的。

四、总结全课,升华认识

学生回顾全课,说说比例的意义和基本性质。

板书设计:

比例的意义和基本性质

2.4∶1.6 =3/2

60∶40=3/2

比例的意义和基本性质教学设计2

教学内容:人教版新课标小学数学六年级下册《比例的意义和基本性质》P32—34页以及相应的“做一做”,练习六第5题.

教学目标:

知识目标:学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。

能力目标:能应用比例的意义和比例的基本性质正确判断两个比能否组成比例。

情感目标:激发学生的学习兴趣,引导学生自主参与知识探究的全过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。

教学重点:理解比例的意义和基本性质.

教学难点:应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

教学理念:充分发挥学生的主体作用,让学生自主参与知识探究的全过程,主动构建新知,发展学生思维,培养学生研究数学的能力。

教学准备:课件

教学过程:

一、激趣导入

1、今天能和在座的同学们一起上课我感到非常高兴,听说同学们都非常聪明、爱动脑筋,课上积极回答问题。今天,我和在座的领导老师们想看一看同学们的表现如何,这节课同学们想不想证明一下自己?

2、请同学们看大屏幕,课件出示P32页四幅图。

二、探究新知

1、比例的意义

师问:

①这四幅图中有什么共同的事物?(齐说)

②这四面国旗出现在什么场合或什么地点?(指生回答)

③这四面国旗的长与宽分别 ……此处隐藏9158个字……生思考,促进学生思考,用问题激发学生的兴趣,用问题控制学生的注意力,用问题拓展学生的思路,用提问强化学生的认知,用问题促进师生之间的交往互动。培养了学生的问题意识,培养学生的自学能力、思维能力、观察能力、表达能力等,从而提高学生解决问题的能力。

4.采用探究式的学习方式。对新课的教学,教师不是把现成的答案强加于学生,而是让学生通过观察、计算、思考、阅读等方式初步感知新知,再进一步提问“你能根据自己的理解说说什么叫做比例吗,”、“你能说一说组成比例要具备哪些条件吗,”、“你还能找出那些比组成比例,”等引导学生思考、探究,学生在合作交流中产生思维碰撞,这样,学生的体验和感受都很深刻。

5.设计了多种形式的练习,升华了学生的思维。练习是巩固新知、发展思维的有效手段。思维目标的实现需要通过一定的练习来完成,本节课设计了六种不同层次、不同功能的练习,有利于学生对比例意义的巩固,有利于提高学生思维的敏捷性,有利于培养学生解决生活中实际问题的能力和习惯。

比例的意义和基本性质教学设计7

教学内容:

义务教育课程标准实验教科书人教版数学六年级下册。

教学目标:

1.理解和掌握比例的意义和基本性质。

2.能用不同的方法判断两个比能否组成比例,并能正确组成比例。

3.通过观察比较、自主探究,提高分析和概括能力,获得积极探索的情感体验。

教学过程:

一、认识比例的意义

1.出示小红、小明在超市购买练习本的一组信息。

(1)根据表中信息,你能选出其中两个量写出有意义的比吗?

(学生思考片刻,说出了1.2∶3、2∶5、1.2∶2、3∶5等多个比,并说出每个比表示的意义。教师适时板书。)

(2)算算这些比的比值,说说你有什么发现。

(学生说出自己的发现,教师用“=”连接比值相等的两个比。)

(3)说说什么叫比例。

(学生各抒己见,师生共同归纳后板书:比例的意义)

评析:比的意义、求比值是这节课所学新知的“生长点”。对此,教师将教材例题后(相当于练习)的一组信息“前置”,这样设计与处理,一是使题材鲜活,导入更为自然;二是把“一组信息”作为学生思考的对象,给学生提供了一定的思维空间,学生学习的热情和积极性明显提高。“激活旧知”后,教师引导学生主动进行比较、发现、归纳,最终实现了对新知的主动建构。

2.即时训练。

A.判断下面每个式子是不是比例,依据是什么?

(1)10∶11(2)15∶3=10∶2

a.学生独立思考,小组讨论交流,说说是怎样判断的,进而说明判断两个比能否组成比例的关键是什么。

b.剩下的(1)(2)(4)三个比中有没有能组成比例的?

c.上面几个比有没有能和5∶4组成比例的,你能不能帮它找一个“朋友”并组成比例?它的朋友有多少个?这些朋友有什么相同点?

评析:认知心理学告诉我们,学生对数学概念、规律的认识和掌握不是一次完成的,对知识的理解总是要经历一个不断深化的过程。因此,上例中教师设计了“即时训练”这一环节。即时训练既有运用新知的直接判断,又有变式和一题多用,较好地体现了层次性、针对性和实效性,它对促进学生牢固掌握新知,灵活运用新知起到了很好的作用。

3.教学比例各部分的名称。

(1)引导学生读教材(相关内容),认识比例各部分名称。

(2)集体交流。(教师板书:内项、外项)

(3)把比例写成分数形式,指出它的内、外项。

(4)任意写一个比例,同桌相互说一说比例各部分的名称。

二、探究比例的基本性质

1.填数。

(1)出示比例8∶( )=( )∶3。想一想,这两个空可能是哪两个数。

〔刚开始时,学生可能从比例的意义的角度去思考,所以填数相对费时,慢慢地,学生似乎发现了“规律”,填数速度加快。教师将学生的发现(如1和24、2和12、0.5和48……)板书在括号下面,与学生一起判断能否组成比例。〕

(2)观察思考:在填这些数的过程中,你有什么发现?

(这一问题满足了学生的心理需求,学生发现每次所填的两个内项之积相等,进而发现“两个内项之积等于两个外项之积”。)

(3)再次设问:在这些比例中,“两个内项之积等于两个外项之积”,这是一种巧合还是在所有的比例中都有这样的规律呢?(学生意见不一,自发产生验证的需求。)

A.先验证黑板上的比例式,再验证自己写的比例式。

B.概括比例的基本性质。同桌相互说一说比例的基本性质。

(4)学了比例的基本性质有什么作用呢?(学生作答。产生用比例的基本性质去验证能否组成比例的需要。)

评析:“每个人的心灵深处都有一种根深蒂固的需要,那就是希望自己是个发现者、研究者、探索者。”这一教学环节正是基于满足学生的“心理需求”而设计的。先由开放性问题引入,给予不同认知基础的学生以各自探究的时间和空间,在自主探索、合作交流中学生的认识经历了由“难”到“易”、由“繁”到“简”的过程。通过“你有什么发现”,“这是一种巧合,还是在所有的比例中都有这样的规律”两个问题指明了学生思考的方向,提升了学生思维的层次,使学生人人体验到“发现者”的快乐。在学生主动获取知识的同时,教师还引领学生经历了科学探究的过程,这些“关于方法的知识”对学生终身学习无疑是有益的。

2.即时训练。

应用比例的基本性质,判断下面的两个比能否组成比例。

3.6∶1.8和4∶24∶9和5∶10

小结:根据比例的基本性质来判断两个比能否组成比例,其实我们是先假设这两个比能组成比例,如果比例的两个外项的积等于两个内项的积,假设成立,两个比能组成比例;如果不相等,就不能组成比例。

三、巩固新知,解决问题

1.猜数游戏。

在下面每个比例中,有一个或两个数被遮掉了,你能根据所学知识把它猜出来吗?

3∶5=6∶( )( )∶5=6∶( )3∶5=( )∶( )

2.你能用3、5、6、10这四个数组成不同的比例吗?把它们都写出来。(学生探索后交流。)

利用这四个数最多能写出几组比例?怎样写既不重复也不遗漏?(根据时间来安排讨论,也可留作课后进一步探讨。)

评析:练习设计能紧紧围绕教学目标精选练习内容,注意练习的梯度、层次和思维含量。特别是最后的挑战性问题把学生带入了“欲罢不能”的境界,学生思维活跃,讨论热烈。

总评:“比例的意义和基本性质”是一堂“老课”,但执教者却能“老课新教”。新授课的巧妙导入,数学化过程的有效展开,训练的精当、扎实、灵活,以及在突出学生是学习的主人,教师是组织者、引导者的课堂师生关系的定位等方面都颇有新意,因而,这是一堂以新课程理念做指导,又保持着数学课“本色”的朴实无华、扎实高效的数学课。

《比例的意义和基本性质教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式