初三数学教学计划范文合集8篇
时光在流逝,从不停歇,我们的教学工作又迈入新的阶段,是不是需要好好写一份教学计划呢?那么教学计划要怎么写才能突出呢?以下是小编整理的初三数学教学计划8篇,欢迎大家借鉴与参考,希望对大家有所帮助。
初三数学教学计划 篇1本学期我担任初三数学教学,为了更好的提高教学知识质量,提高学生的学习数学的技能,特制定本学期教学计划如下:
一、教学目标:
1、教育学生掌握基础知识与基本技能;培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源于实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
2、培养学生良好的数学学习习惯,在班级营造良好的学习氛围,调动大多数学生的学习积极性,提高整体的数学素质,从而提高平均分。期末平均分提高五分以上,让每个学生都有不同程度的提高。
3、辅导学困生,对一些有潜力进步,但由于各种原因成绩教差的学生,给予充分关注,调动学习积极性,使成绩尽快提高。
二、教学措施
1、尽快了解学生,融洽师生关系,消除学生逆反心理,进入正常的学习状态,建立良好的学习氛围,提高学生的学习热情。
2、认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。提高课堂效率,向课堂45分钟要效率。深入挖掘教材、把握重点难点、关键,争取在课堂上消化知识,这也是提高学生学习兴趣的最主要途径。
3、多研究教学改革、多参加听评课活动,多学习,不断在教学实践中总结教学经验,提高自己的教学能力。
4、作好常规教学,及时批改作业,及时复习,及时反馈,及时了解学生的学习状态,采取相应的措施。不让每一名学生放弃数学。不让每一名学生放松学习,经常使用鼓励性语言,建立融洽的师生关系。
5、组织学困生的辅导。课堂上多进行提问 ,多与学生沟通,调动他们的积极性,发挥他们的潜力,增强学习信心。
三、其它方面
在认真完成本职工作的同时,以饱满的热情参加学校组织的各种活动,同时制订合理的计划,为下学期全面迎接毕业考试和升学做好准备。
初三数学教学计划 篇2初三《代数》包括一元二次方程、函数及其图象和统计初步三章内容,其中一元二次方程一章的主要内容为:一元二次方程的解法和列方程解应用题,一元二次方程的根的判别式,根与系数的关系,以及与一元二次方程有关的分式方程的解法;重点是一元二次方程的解法和列方程解应用题;难点是配方法和列方程解应用题;关键是一元二次方程的解法。函数及其图象一章的主要内容是函数的概念、表示法、以及几种简单的函数的初步介绍;重点是一次函数的概念、图象和性质;难点是对函数的意义和函数的表示法的理解;关键是处理好新旧知识联系,尽可能减少学生接受新知识的困难。统计初步一章的主要内容和重点是平均数、方差、众数、中位数的概念及其计算,频率分布的概念和获取方法,以及样本与总体的关系。
初三《几何》包括解直角三角形和圆两章内容,其中解直角三角形一章的主要内容为锐角三角函数和解直角三角形,也是本章重点;难点和关键是锐角三角函数的概念。圆一章的主要内容为圆的概念、性质、圆与直线、圆与角、圆与圆、圆与正多边形的位置、数量关系;重点是圆的有关性质、直线与圆、圆与圆相切的位置关系,以及和圆有关的计算问题;难点是运用本章及以前所学几何或代数知识解决一些综合性较强的题目;关键是对圆的有关性质的掌握。
初三《代数》和《几何》是初中数学的重要组成部分,通过初三数学的教学,要使学生学会适应日常生活,参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识饩黾虻氖导饰侍猓培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。
本学年我担任初三年级31、33两个班的数学教学工作。其两班学生在数学学科的基本情况是:大多数学生对初二学年的数学基础知识掌握太差,很多知识只限于表面了解,机械记忆,忽视内在的、本质的联系与区别,不注重对知识的理解、掌握及灵活运用,特别是少数学生对某些章节(如四边形、分式、二次根式等)或者是一问三不知,或者是张冠李戴。就班级整体而言,33班成绩大多处于中等偏下,31班成绩大多处于中等层次。本学期初三数学教学工作主要学习初三《代数》的第十二章和第十三章的部分内容、《几何》第六章和第七章的部分内容。
初三《代数》包括一元二次方程、函数及其图象和统计初步三章内容,其中一元二次方程一章的主要内容为:一元二次方程的解法和列方程解应用题,一元二次方程的根的判别式,根与系数的关系,以及与一元二次方程有关的分式方程的解法;重点是一元二次方程的解法和列方程解应用题;难点是配方法和列方程解应用题;关键是一元二次方程的解法。函数及其图象一章的主要内容是函数的概念、表示法、以及几种简单的函数的初步介绍;重点是一次函数的概念、图象和性质;难点是对函数的意义和函数的表示法的理解;关键是处理好新旧知识联系,尽可能减少学生接受新知识的困难。统计初步一章的主要内容和重点是平均数、方差、众数、中位数的概念及其计算,频率分布的概念和获取方法,以及样本与总体的关系。
初三《几何》包括解直角三角形和圆两章内容,其中解直角三角形一章的主要内容为锐角三角函数和解直角三角形,也是本章重点;难点和关键是锐角三角函数的概念。圆一章的主要内容为圆的概念、性质、圆与直线、圆与角、圆与圆、圆与正多边形的位置、数量关系;重点是圆的有关性质、直线与圆、圆与圆相切的位置关系,以及和圆有关的计算问题;难点是运用本章及以前所学几何或代数知识解决一些综合性较强的题目;关键是对圆的有关性质的掌握。
初三《代数》和《几何》是初中数学的重要组成部分,通过初三数学的教学,要使学生学会适应日常生活,参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识饩黾虻氖导饰侍猓培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。
本学年我担任初三年级31、33两个班的数学教学工作。其两班学生在数学学科的基本情况是:大多数学生对初二学年的数学基础知识掌握太差,很多知识只限于表面了解,机械记忆,忽视内在的、本质的联系与区别,不注重对知识的理解、掌握及灵活运用,特别是少数学生对某些章节(如四边形、分式、二次根式等)或 ……此处隐藏6549个字……段复习宜细不宜粗。
第二轮,针对热点,抓住弱点,开展难点知识专项复习。学数学的目的是为了用数学,近年来各地中考涌现出了大量的形式活跃、趣味有益、启迪智慧的好题目,各位考生应在老师的指导下,对这些热点题型认真复习,专项突破。热点题型一般有:阅读理解型、开放探究型、实际应用型、几何代数综合型、研究性学习型等。注意:你应该有一本各省市中考试题汇编资料,要知道外地考题中出现的精彩题型,往往就是本地命题的借鉴。
第三轮,锁定目标,备战中考,进行模拟训练。经过第一轮和第二轮的复习,学习的基础知识已基本过关,大约到五月中、下旬就应该是第三轮的模拟训练,其目的就是查漏补缺和调整考试心理,便于以最佳状态进入考场,建议考生在做好学校正常的模拟训练之余,最好使用各地中考试卷,设定标准时间,进行自我模拟测验。注意:自己评分应按评分标准进行,且不可只看答案,不看给分点。初中数学总复习大致经过三轮,在第一轮复习中,往往存在以下问题: 1.复习无计划,效率低,体现在重点不准,详略不当,难度偏低,对课标和教材的上下限把握不准。
2.复习不扎实,漏洞多,体现在1)高档题,难度太大,扔掉了大块的基础知识。2)复习速度过快,对学生心中无数,做了夹生饭,返工来不及,不返工漏洞百出。3)要求过松,对学生有要求无落实,大量的复习资料,只布置不批改;无作业。
3.解题不少,能力不高,表现在:1)以题论题,不是以题论法,满足于解题后对一下答案,忽视解题规律的总结。2)题目无序,没有循序渐进。3)题目重复过多,造成时间精力浪费。
在第二轮复习中,应防止出现如下问题: 1.防止把第一轮复习机械重复 2.防止单纯就题论题,应以题论法 3.防止过多搞难题
在第三轮复习中,应防止出现下列问题: 1.过多做练习,以练代讲 2.以复习资料代替教练,不备课,课堂组织松散 3.只注重知识辅导,不进行心理训练。
措施:让学生向错误学习,放手让学生自己去搞点讲评,自己动手建立错题档案。
对于有价值的题目,让学生总结题目考查了哪些知识点,每个知识点是从哪个角度考查的,题目考查了哪些数学思想方法,本题有哪几种解题方法,最佳解法是什么?当自己出错时,是知识上的错误还是方法上的错误,是解题过程的失误还是心理上的缺陷导致的失误。切实解决会而不对,对而不全,全而不美的问题。
五、以人为本,重在落实
1、不放弃每一个学生,不管是上新课阶段还是复习阶段,每一次测试都对不同的学生提出他们可望也可及不同的目标,在课堂上注重班级实际,注重学生实际,以基础为主,注重 双基 ,不弄偏题、怪题,面向80%的学生,这样也有利于对班级的管理,也让他们感觉老师对他们关心。
2、对每一次测试都作出详细的分析,细到每一道题哪些学生得分,哪些学生失分及错误原因,这样在讲评时就能更有针对性,对错的少的题就个别讲解,有时还得进行分层讲评。
3、一模后对每位学生进行得分分析,哪些题是必得分部分,哪些题是尽可能得分部分,在复习中重点放在哪些知识和哪些题型上,进行分层推进,优秀学生重点训练第24、25、26题的中考压轴题,中等学生重点训练第17――23题,学困生重点训练选择题、填空题、方程和不等式。
初三数学教学计划 篇8高耸入云的建筑物,海洋石油钻井平台、人造地球卫星等等,都是人类数学智慧的结晶。接下来我们大家一起了解初三数学点和圆的位置关系教学计划。
(一)创设情境 导入新课
活动一:观察
我国射击运动员在奥运会上获金牌,为我国赢得荣誉,图是射击靶的示意图,它是由许多同心圆(圆心相同,半径不相同)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?
提示:解决这个问题要研究点和圆的位置关系.
活动二:问题探究
问题1:观察图中点a,点b,点c与圆的位置关系?
点a在圆内,点b在圆上,点c在圆外
问题2:设⊙o半径为r,说出来点a,点b,点c与圆心o的距离与半径的关系:oa< r,ob = r,oc >r
问题3:反过来,已知点到圆心的距离和圆的半径,能否判断点和圆的位置关系?
设⊙o的半径为r,点p到圆心的距离op = d,则有:
点p在圆内d点p在圆上d=r点p在圆外d>r例题讲解 如图所示,已知矩形abcd的边ab=3cm,ad=4cm.
(1)以点a为圆心,4cm为半径作⊙a,则点b、c、d与⊙a的位置关系如何?
(二)合作交流 解读探究
活动三
你知道击中靶上不同位置的成绩是如何计算的吗 ?
射击靶图上,有一组以靶心为圆心的大小不同的圆,他们把靶图由内到外分成几个区域,这些区域用由高到底的环数来表示,射击成绩用弹着点位置对应的环数来表示.弹着点与靶心的距离决定了它在哪个圆内,弹着点离靶心越近,它所在的区域就越靠内,对应的环数也就越高,射击的成绩越好.
活动四:探究
(1)如图,做经过已知点a的圆,这样的圆你能做出多少个?
(2)如图做经过已知点a、b的圆,这样的圆你能做出多少个?他们的圆心分布有什么特点?
思考
经过不在同一条直线上的三点做一个圆,如何确定这个圆的圆心?
分析:如图 三点a、b、c不在同一条直线上,因为所求的圆要经过a、b、c三点,所以圆心到这三点的距离相等,因此这个点要在线段ab的垂直的平分线上,又要在线段bc的垂直的平分线上.
1.分别连接ab、bc、ac
2.分别作出线段ab的垂直平分线l1和l2,设他们的交点为o ,则oa=ob=oc;
3.以点o为圆心,oa(或ob、oc)为半径作圆,便可以作出经过a、b、c的圆.
由于过a、b、c三点的圆的圆心只能是点o,半径等于oa,所以这样的圆只能有一个,即:
结论:不在同一条直线上的三点确定一个圆.
经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆,
外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心.
(三)应用迁移 巩固提高
1、判断下列说法是否正确
(1)任意的一个三角形一定有一个外接圆( ).
(2)任意一个圆有且只有一个内接三角形( )
(3)经过三点一定可以确定一个圆( )
(4)三角形的外心到三角形各顶点的距离相等( )
2、如图,已知等边三角形abc中, 边长为6cm,求它的外接圆半径.
3、如图,已知 rt⊿abc 中 ,若 ac=12cm,bc=5cm,求的外接圆半径.
(四)总结反思 拓展升华
总结:1、本节学习的数学知识:(1)点和圆的位置关系;(2)不在同一直至线上的三点确定一个圆。
2、本节学习的数学方法是数形结合