小数近似数的教学反思

时间:2024-02-24 04:06:04
小数近似数的教学反思

小数近似数的教学反思

作为一位到岗不久的教师,课堂教学是重要的任务之一,借助教学反思我们可以快速提升自己的教学能力,那么大家知道正规的教学反思怎么写吗?以下是小编为大家收集的小数近似数的教学反思,希望能够帮助到大家。

小数近似数的教学反思1

在数学过程中,我充分利用学生的认知规律,已有的生活经验和数学的实际,转化“以教材为本”的旧观念,灵活处理教材,根据实际需要对原材料进行优化组合。

在教学中,我从多方面“找”数学素材和多让学生到生活中“找”数学,“想”数学,真切感受“生活中处处有数学。”根据这一理念,本环节教学时,例题1不是课本中的例题,是我根据学生已有的知识经验而编制的例题,目的是让学生综合应用所学知识和技能解决问题、发展应用意识、在探索中形成自己的观点,能在相互交流和反思的过程中逐渐完善自己的想法。在教学过程中,学生的思维是活跃的,教学采用学生自主探究、合作交流的学习方式,鼓励学生积极主动地参与探索新知的全过程。在小组交流中把学生的思维充分暴露出来,加深学生对“用四舍五入法求小数的近似数”的理解。我善于提出问题引导学生思考。所提出的问题不论是实际问题还是理论问题都紧密结合教学内容,并编拟成科学的探究程序。

所以在教学过程中,我是分层次教学的,重点放在教学“①保留两位小数”的方法上,坚持启发式,让学生多说多讨论,激发学生积极思维,引导他们自己发现和掌握有关规律。然后再帮助分析讲解,使学生的思路更加清晰;在教学“②保留一位小数”时,则问得较少,使学生能根据刚才的知识形成一条清晰的思路。

小数近似数的教学反思2

师:今天,我们来认识另外一种数,[教学反思]求一个数的近似数教后感。下面,把书本打开,看看书本上是怎样介绍另外一种数的。

生看书自学课文第一、二自然段。

师:同桌交流一下,你看到的数叫什么,生活中碰到过这样的数吗?举例说一说。

全班交流。

生:我知道另一种数叫近似数,它表示大概有多少。

生:我知道近似数就是不是很准确的,只要接近这个数,大约是多少。比如说,我身高大约1米30。

生:我来说,我家离学校骑车大约要10分钟。

……

师:那我们怎样求一个准确数的近似数呢?再来看书本例5例6和下面的那段话。把不懂的地方划出来。同桌交流。

学生再次看书自学。

生:我知道用四舍五入法可以求一个数的近似数。

四人小组讨论什么叫四舍五入法,汇报,请学生结合具体的数来讲一讲。请学生做小老师,到讲台上来讲给学生听,数学论文《[教学反思]求一个数的近似数教后感》。

生:我说101约等于100,我看十位上的数是0,它不满5,直接把尾数舍去。

生:我说289约等于300,我是看十位上的8,它比5大,把尾数舍去后还要向前一位进一,所以约等于300。

师:你们都说得很好。再来讨论一下,你认为979省略最高位后面的尾数约是多少?919呢?4919呢?4499呢?

生依次回答,对4499出现的错误较多,认为应该约等于5000。

师:再来把书本上介绍的四舍五入法齐读一遍,想一想,它到底应该等于几。

生:哦,我看明白了,4499的最高位是千位,我们要看尾数左起第一位,它是百位上的4,4不满5,所以直接把尾数舍去。4499约等于4000,而不是5000。

师:弄懂了四舍五入的意思,我们一起来练一练。

学生做练习第一题。

师:学了求一个数的近似数,对我们的数学有什么好处呢?再次自学书本例7。

生:学了求一个数的近似数,我们可以进行估算。有时,可以帮我们检查计算是不是正确。

师:一起来估算一下328×4约等于多少?

生:我把328省略最高位后面的尾数,约等于300,300×4=1200,所以328×4的结果跟1200接近。

课后反思

在几年的课堂实践中,我发现我对数学书的利用率不是很高。教应用题时,把例题写在小黑板上讲解;教式题、计算题时,有时干脆直接把题目写在大黑板上进行讲解。只有在让学生做练习题时,才叫学生把书本打开。所以有时候,我

上到第几页,学生都没处找。在本节课中,我没有按照惯例出示例题,进行示范、讲解,学生被动的接受。而是充分利用教

求小数的近似数教学反思6

本节课是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数,在学习之前,我先让学生复习了求整数的近似数的方法——四舍五入法,在求小数近似数的过程中,重点把握了三个教学重难点,即:理解“保留几位小数;精确到什么位;省略什么位后面的尾数”这些要求的含义;表示近似数的时候,小数末尾的“0”必须保留,不能去掉;连续进位的问题。

教学从生活出发,让学生感受数学与实际的联系。在引入环节,在超市买菜时,总价是7、53元,而售货员只收7元5角钱,这就是在求7、53这个小数的近似数。在创设情境环节,结合教科书的主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。

在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0。984≈0。98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0。984≈1。0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0。984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。

但在“保留几位小数、精确到什么位、省略什么位后面的尾数”都出现以后,没有把它们之间的联系梳理出来,这样就会给学生造成要求太多记不住的麻烦。如果让学生明白保留两位小数就是要精确到百分位,省略百分位后面的尾数也是要精确到百分位,学生审题后就会自然地归到精确什么位,看什么位进行四舍五入的思维模式,这样就有了更加清晰的思维。

小数近似数的教学反思3

本节课的内容是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数。本节课的教学重点是理解保留整数、保留一位小数、保留两位小数的含义。教学难点是近似数的连续进位问题。

成功之处:

1、复 ……此处隐藏11022个字……>(一)、出示例题:

例1.地球和太阳之间的平均距离大约是1.496亿千米。

接着明确要求:

精确到十分位是多少亿千米?

精确到百分位是多少亿千米?

精确到整数是多少亿千米?

然后让学生进行独立思考,发表意见,说出结果及想法。

1、精确到十分位

思考:精确到十分位就是要保留几位小数?

(1)学生独立探索。

(2)小组交流。

(3)反馈:要保留一位小数,就要省略十分位后面的数,要看百分位上的数。百分位上的9满5,进一。

1.496亿千米≈1.5亿千米

讲解:精确到十分位,就是保留一位小数。

2、精确到百分位

(1)独立完成

(2)组织交流。

精确到百分位就是要保留两位小数,就要省略百分位后面的数,要看千分位上的数。千分位上的6,省略尾数后向百分位进1。百分位上9+1=10,满十又要向前一位进一。

1.496亿千米≈1.50亿千米

问:近似数1.50末尾的0能去掉,为什么?

学生讨论:明确:不能去掉,去掉就不符合要求了。

教师总结:0不能去掉,它起到占位的作用。

3、比较精确度。

问:1.5和1.50哪个更精确?

学生讨论后汇报想法。

想法1:1.5是精确到十分位的结果,1.50是精确到百分位的结果,所以1.50比1.5更精确。所以1.50末尾的0不能去掉。

想法2:近似值是1.5的两位小数在1.45-1.54之间,而近似值是1.50的三位小数在1.495-1.504的范围更大,所以1.50比1.5更精确。

4、精确到整数

(1)独立完成

(2)组织交流。

精确到整数就要省略百分位后面的数,要看十分位上的数。十分位上的4,

省略小数点后的尾数。

5、教学“试一试”

学生独立解决,集体订正。

引导学生比较与刚才例题的区别,进一步明确什么时候应四舍,什么时候应五入。

(二)小结:

教师提出问题:求小数近似数应注意什么?

引导学生讨论知道:求一个小数的近似数要注意两点:

(1)要根据题目的要求取近似值,

如果要保留整数,就要看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是舍还是入。

(2)取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉。

(三)、教学“练一练”

学生独立解决,集体订正。

电评时引导学生在两方面进行比较:

(1)按不同精确要求求近似数的比较。

(2)取一个数的近似数与把一个数改写

成以“万”或“亿”作单位的小数的方法的比较。

第二小题练习完毕后,再要求学生把改写后的小数和求出的近似数分别放入原来的语言环境中读一读、比一比,体会到用“万”作单位的小数及其近似数的应用价值。

四、练习巩固,拓展应用

1.填空:

① 求一个小数的近似数,要根据需要用()法保留小数数位.保留整数,表示精确到()位;保留一位小数表示精确到()位;保留两位小数表示精确到()位……

②近似数的结果一般地说6.0要比6精确.因为6.0表示精确到了()位,6表示精确到了()位,所以6.0后面的“0”不能丢掉.

2.判断题(用手势表示“√”或“×”)

①3.97精确到十分位是4.0。()

②把9.996精确到百分位是10.00。()

③8和8.0的大小相等,它们的精确度也相同。()

④在表示近似数时,小数末尾的0应该去掉。()

3.“练习七”第五题。

(1)学生独立完成

(2)教师检查反馈。

说明:把王强身高精确到百分位,体重精确到个位,让学生体会到实际应用中要根据需要来确定近似数的精确程度。

4、“练习七”第6题。

(1)组织学生观察、比较,说说哪组的两个数是等值。哪组的两个数是近似。

(2)独立填写后再组织汇报交流。

5、“练习七”第7~8题。

学生独立审题并解答。

6、解决前面的问题。在实际生活中,9.547元≈()元

5.小数的近似数在我们生活中应用非常广泛,请同学们课余留心观察,看什么地方有了小数近似数,下节课来大家交流。

五、课堂作业:

“练习七”第4题。

六、收获提炼

今天这节课你有哪些新的收获?还有什么要提醒同学们注意的地方吗?

七、课后反思

1、探索是数学的生命线,没有探索就没有数学的发展。课始,先让学生明确探索的目标,给学生以思维的方向。课中,引导学生从求整数的近似数迁移至小数,使学生的探索思维多角度、多层次展开,在学生探索的过程中学习数学、理解数学,从而感受到数学的魅力。

2、新课程注重强调学生的主体地位。但是我认为在特定的课堂时空中,要让没有多少探索经验和能力贮备的学生完全自主地“找”出求小数近似数的方法,也实在有些勉为其难。

因此,在课堂教学中我注意适度地加以引导,做到了放得“开”,收得“拢”;放得适度,收得自然。

既尊重了学生的主体地位,又张扬了学生的个性,同时有效地完成了课堂教学任务。

小数近似数的教学反思15

学生对求一个小数的近似数掌握较好,基本能够根据题目要求求出一个小数的近似数。

然而对于把不是整万或整亿的数改写成用“万”或“亿”作单位的数就不乐观了。主要有以下几个方面的原因:

1、以前学生学过把整万或整亿的数改写成用万或亿作单位的数,而今天所学的是把一个不是整万或整亿的数改写成以“万”或“亿”作单位的数,这就增加了难度,学生不知小数点后面的小数部分该如何处理。

2、前面刚学过求一个小数的近似数,学生往往把求一个小数的近似数和把不是整万或整亿的数改写成用“万”或“亿”作单位的数相混淆,错把改写当成了求一个小数的近似数。

针对以上情况,解决办法:一方面给学生讲清把不是整万或整亿的数改写成用“万”或“亿”作单位的数和把整万或整亿的数改写成用万或亿作单位的数方法相同,后者的改写是移动小数点,其实前者也是移动小数点,只不过运用了我们后面所学的小数的基本性质,把小数点后面的零去掉了。另一方面,讲清求一个小数的近似数和把一个数改写成指定单位的数有什么区别:求近似数需要省略后面的尾数,所以求的是一个数的近似数;而改写成以“万”或“亿”作单位的数,只要把小数点向左移动四位或八位,加一个单位就可以,没有大小的改变数的大小;

3、多讲多练,在不断的重复练习过程中,让学生自悟。

《小数近似数的教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式