《反比例》数学教案
作为一名人民教师,通常需要准备好一份教案,教案是教学蓝图,可以有效提高教学效率。那要怎么写好教案呢?以下是小编精心整理的《反比例》数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
《反比例》数学教案1教学目标
1.使学生理解,能够初步判断两种相关联的量是否成比例,成什么比例.
2.通过观察、比较、归纳,提高学生综合概括推理的能力.
3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.
教学重点
理解正反比例的意义,掌握正反比例的变化的规律.
教学难点
理解正反比例的意义,掌握正反比例的变化的规律.
教学过程
一、导入新课
(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?
(二)教师提问
1.你为什么马上能想到还剩多少呢?
2.是不是因为吃了的和剩下的是两种相关联的量?
教师板书:两种相关联的量
(三)教师谈话
在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和
数量也是两种相关联的量.你还能举出一些例子吗?
二、新授教学
(一)成正比例的量
例1.一列火车行驶的时间和所行的路程如下表:
时间(时)
1
2
3
4
5
6
7
8
……
路程(千米)
90
180
270
360
450
540
630
720
……
1.写出路程和时间的比并计算比值.
(1)
(2) 2表示什么?180呢?比值呢?
(3) 这个比值表示什么意义?
(4) 360比5可以吗?为什么?
2.思考
(1)180千米对应的时间是多少?4小时对应的路程又是多少?
(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?
教师板书:时间、路程、速度
(3)速度是怎样得到的?
教师板书:
(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?
(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.
3.小结:有什么规律?
教师板书:商不变
(二)成反比例的量
1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.
工效(个)
10
20
30
40
50
60
……时间(时)
60
30
20
15
12
10
……
2.教师提问
(1)计算工效和时间的乘积.
(2)这一组题中涉及了几种量?谁与谁是相关联的量?
(3)请你举例说明谁与谁是相对应的两个数?
(4)在这一组题中两种相关联的量是如何变化的?(举例说明)
3.小结:有什么规律?(板书:积不变)
(三)不成比例的量
1.出示表格
运走的吨数
10
20
30
40
剩下的吨数
90
80
70
60
总吨数(和不变)
100
100
100
100
2.教师提问
(1)总吨数是怎样得到的?
(2)谁与谁是两种相关联的量?
(3)它们又是怎样变化的?变化的规律是什么?
运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变
(四)结合三组题观察、讨论、总结变化规律.
讨论题:
1.这三组题每组题中谁与谁是两种相关联的量?
2.在变化过程当中,它们的异同点是什么?
共同点:都有两种相关联的量,一种量变化,另一量也随着变化
不同点:第一组商不变,第二组积不变,第三组和不变.
总结:
3.分别概括
4.强调第三组题中两种相关联的量叫做不成比例
5.教师提问
(1)两种量成正比例必须具备什么条件?
(2)两种量成反比例必须具备什么条件?
(五)字母关系式
三、巩固练习
判断下面各题是否成比例?成什么比例?
1.一种圆珠笔
总价(元)
1。2
2。4
3。6
4。8
6
……此处隐藏14937个字……中:
相关联的量是路程和时间. 路程随着相关联的量是速度 路程随 时间变化,速度是 和时间,速度随着时间变化
一定。因此,路程和时间 ,路程是一定的。因此,速
成正比例关系。 度和时间成反比例关系
然后提问:
(1)从表1,你怎样发现速度是一定的?你根据什么判断路程和时间成正比例/
(2)从表2,你怎样发现路程是一定的?你根据什么判断速度和时间成反比例?
教师:路程、速度和时间这三个量中每两个量之间有什么样的比例关系?
板书:速度×时间=路程
=速度 =速度
教师:当速度一·定时,路程和时间成什么比例关系?
教师:当路程一定时,速度和时间成什么比例关系?
教师:当时间一定时。路程和速度成什么比例关系?
2.比较正比例和反比例关系。
教师:结合上面两个例子,比较——下正比例关系和反比例关系,你能写出它们的相同点和不同点吗?试试看。组织讨论,教师归纳并板书:
四、巩固练习
1.做教科书第28页“做一做”中的题目。
让学生自己填,并说一说为什么。
2.做练习七的第1—2题。
教师巡视,个别辅导,最后订正。
五、小结
教师:请同学们说说正比例和反比例关系有什么相同点和不同点?
《反比例》数学教案15教学目标
1.理解反比例的意义。
2.能根据反比例的意义,正确判断两种量是否成反比例。
3.培养学生的抽象概括能力和判断推理能力。
教学重点
引导学生理解反比例的意义。
教学难点
利用反比例的意义,正确判断两种量是否成反比例。
教学过程
一、复习准备(演示课件:成反比例的量)
1.下表中的两种量是不是成正比例?为什么?
购买练习的本数(本)
1
2
4
6
9
总价(元)
0.80
1.60
3.20
4.80
7.20
2.回忆:成正比例的量有什么特征?
二、新授教学
(一)引入新课
我们已经学习了常见数量关系中成正比例关系的量的特征。这节课我们继续研究常见的数量关系中的另外一种特征成反比例的量。
教师板书:成反比例的量
(二)教学例4(演示课件:成反比例的量)
1.出示例4,提出观察思考要求:
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(1)表中的两种量是每小时加工的数量和所需的加工时间。
教师板书:每小时加工数和加工时间
(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。
教师追问:这是两种相关联的量吗?为什么?
(3)每两个相对应的数的乘积都是600.
2.这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?
教师板书:零件总数
每小时加工数加工时间=零件总数
3.小结
通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。
(三)教学例5(演示课件:成反比例的量)
1.出示例5,根据题意,学生口述填表。
2.教师提问:
(1)表中有哪两种量?是相关联的量吗?
教师板书:每本张数和装订本数
(2)装订的本数是怎样随着每本的张数变化的?
(3)表中的两种量有什么变化规律?
(四)比较例4和例5,概括反比例的意义。
1.请你比较例4和例5,它们有什么相同点?
(1)都有两种相关联的量。
(2)都是一种量变化,另一种量也随着变化。
(3)都是两种量中相对应的两个数的积一定。
2.教师小结
像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。
3.如果用字母 和 表示两种相关联的量,用 表示它们的积一定,反比例关系可以用一个什么样的式子表示?
教师板书:= (一定)
(五)教学例6(演示课件:成反比例的量)
1.出示例6,教师提问:
(1)每天播种的公顷数和要用的天数是不是相关联的量?
(2)每天播种的公顷数和要用的天数有什么关系?它们的积是什么?这个积一定吗?
(3)播种总公顷数一定,每天播种公顷数和要用的天数成反比例吗?为什么?
2.思考:播种的总公顷数一定,已经播种的公顷数和剩下的公顷数是不是成反比例?
三、课堂小结
这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
四、课堂练习
(一)判断下面每题中的两个量是不是成反比例,并说明理由。
1.路程一定,速度和时间。
2.小明从家到学校,每分走的速度和所需时间。
3.平行四边形面积一定,底和高。
4.小林做10道数学题,已做的题和没有做的题。
5.小明拿一些钱买铅笔,单价和购买的数量。
(二)你能举一个反比例的例子吗?
五、课后作业
判断下面每题中的两种量是不是成反比例,并说明理由。
1.煤的总量一定,每天的烧煤量和能够烧的天数。
2.种子的总量一定,每公顷的播种量和播种的公顷数。
3.李叔叔从家到工厂,骑自行车的速度和所需的时间。
4.华容做12道数学题,做完的题和没有做的题。
5.生产电视机的总台数一定,每天生产的台数和所用的天数。
6.长方形的面积一定,它的长和宽。
7.小林拿一些钱买练习本,单价和购买的数量。
六、板书设计
成反比例的量
例4.每小时加工数加工时间=零件总数(一定)
例5.每本页数装订本数=纸的总页数(一定)
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量。它们的关系叫做反比例关系。
= (一定)
例6.因为:每天播种的公顷数天数=播种的总公顷数(一定)
所以:每天播种的公顷数和要用的天数成反比例。