关于分数的意义教案四篇
作为一名优秀的教育工作者,就有可能用到教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么应当如何写教案呢?以下是小编精心整理的分数的意义教案4篇,欢迎大家分享。
分数的意义教案 篇1
学习内容:
课本第76页例2及“做一做”第2题。
学习目标:
1.我能通过学习归纳概括出分数的基本性质,并能理解分数基本性质,运用分数基本性质解题。
2.我能体会到数学知识间的内在联系,感受学习数学知识的价值。
学习重难点:
我能应用分数的基本性质解决简单的实际问题。
学习过程:
一、导入新课
二、合作探究、检查独学
1.自学教科书76页例2: 把和化成分母是12而大小不变的分数。
(1)思考:① 要把2/3化成分母是12的分数,我们就要把分母( )乘( )才能得到12;分数的基本性质告诉我们,分数的分子和分母要同时乘或除以相同的数(0除外)时,分数的大小才不变,现在我们把分母3乘了个4,所以要使分数大小不变,就应该( )。最后分子分母都乘了个( ),就把2/3化成了分母是12的分数( )。
② 要把10/24化成分母是12的分数,我们就要把分母( )除以( )才能得到12;分数的基本性质告诉我们,分数的分子和分母要同时乘或除以相同的数(0除外)时,分数的大小才不变,现在我们把分母24除以了个2,所以要使分数大小不变,就应该( )。最后分子分母都除以了个( ),就把10/24化成了分母是12的分数( )。
(2)结合我们上面的思考,把教科书75页例2中的几个方框填完整。
2.小组代表展示、汇报
3.总结升华
4.我能行: 完成课本第76页“做一做”第2题。
分数的意义教案 篇2
一、教学目标:
1、使学生认识百分数。
2、了解百分数的意义。
3、会写百分数。
4、区分百分数与分数的不同。
5、让学生在各种活动中,培养比较、分析、分辨的能力。
二、教学重难点:
理解百分数的意义
三、教学过程:
(一)、引出百分数,教学百分数的读法。
1、百分数的引出
师:近年来,我们学生的近视率引起了大家的高度重视,根据去年年底的统计,我市学生的近视情况如下(媒体出示)
师:这里出现了三个新的数,它们分别读作:百分之十八,百分之四十九,百分之六十四点二,你还在什么地方见过上面这样的数呢?
2、揭题
生展示他们找到的百分数。
师有选择的板书并小结:看来生活中这样的数确实挺多的。数学上把这样的数,叫百分数。那么什么是百分数的意义?百分数怎么写?还有哪些跟百分数有关的知识呢?这节课,我们就一起来学习一下。
(二)、凸显百分数的优点,教学写法
1、比较中凸显百分数的优点
师:大家都在关心我们学生的近视情况,作为老师当然更要关心我们学校同学的近视情况。下面是老师调查的二、三年级的近视情况(出示表格)
年级 总人数 近视人数 近视人数占总人数的 近视率
二年级 20 2
三年级 25 3
师:二年级的近视人数占总人数的多少呢?三年级呢?哪个年级的近视情况好些呢?你是怎么比较的?可以先在草稿本上写写算算。
学生反馈:可能会出现通分成分母是50的,也可能是100的。
师挑选通分成分母是100的提问:为什么把分母都通分成100呢?(便于比较)
2、教学写法
师:二年级近视人数占总人数的10/100,又可以写成二年级近视率是10%。(媒体出示再板书)我们写百分数的时候在分子10的后面加上百分号。看看我们写百分数的时候要注意什么呢?(百分号的小圆圈写小点)那么三年级近视人数占总人数的12/100,可以怎样写呢?生写在草稿本上,指名一生板演。
(三)、百分数意义、
1、指导着说百分数的意义
师:三年级的近视率12%指的是哪两个数之间的关系?
师:也就是说三年级的近视率12%表示?(三年级近视人数是总人数的12/100)(板书)
师:那么二年级的近视率10%又表示什么?(二年级近视人数是总人数的10/100)(板书)
2、生自主说
师:那么谁能说说我市小学生的近视率18%,中学生的近视率49%,高中生的近视率64。2%分别表示什么意思呢?自己轻轻地说一说。
生反馈说,师选择小学生近视率表示意义板书。
师:看到这些信息,你想说什么呢?
3、小组内说
师:通过这些百分数的呈现,我们大家简洁明了的看到了学生近视情况的严重性,其实在生活中百分数的应用非常广泛,同学们刚才也找了很多,你能把你找到的百分数所表示的意义在小组内说说吗?
生反馈,师挑选组的代表说,并板书。
4、小结百分数意义
师:说了那么多百分数的意义,那么到底百分数表示什么呢?
师小结:刚才同学们都已经说的都非常接近了。百分数就表示一个数是另一个数的百分之几。(板书意义)
(四)、辨别百分数与分数区别
1、辨别
师:我们来看看下面的百分数是表示谁是谁的关系呢?
出示:
鸡的只数是鸭的75%
一根绳子的'长度是一根铁丝的51/100。(51/100可以改写成51%吗?)
出示:
一堆煤重87/100吨。(看看下面这个分数可以改写成百分数吗?为什么?)
2、师小结:分数可以表示一个具体的数,也可以表示两个数之间的关系,而百分数只能表示两个数之间的关系,后面不能加单位。
3、加深理解进行判断
(1)一段绳子长29/100;
(2)一段绳子长29%米;
(3)分母是100的分数都是百分数;
(4)百分数的分母都是100
(五)、巩固练习
师:简单回顾一下,我们这节课学习了哪些知识?你会写百分数了吗?
1、写出下面的百分数
百分之一 百分之二十八 百分之零点五
2、读出下面百分数,想想下面的信息给了你哪些启示?
(1)一次性筷子是日本人发明的,日本的森林覆盖率高达65%,但他们一次性筷子全靠进口;我国森林覆盖率不到14%,却是出口一次性筷子的大国。
(2)地球总储水量中只有3%是淡水,而这些淡水中可以直接饮用的只有0。5%。
(3)今天我们班同学的出勤率是100%。
四、教学结束:
课堂总结
师:这节课你有哪些收获呢?其实爱迪生说过天才=99%的汗水+1%的灵感
同学们对于学习也要付出努力,不怕辛苦。
分数的意义教案 篇3
师生活动
一、 导入新课。
二、 教学新课。
三、实际应用
四、总结
“猜猜哪杯糖水甜?”
1、出示2杯糖水:1号杯——水30克,其中糖5克,
2号杯——水20克,其中糖4克。
小组讨论,说说你是怎样判断的。
学生交流。
小结:根据糖和糖水的关系或糖和水的关系,才能判断出谁甜。
2、依据糖和糖水的关系,判断小组上表格中的3杯糖水谁最甜?小组分工合作完成。
学生交流,说说你是怎么比较的?
1、百分数的意义。
如果要想比较这一共的糖水谁最甜,该怎么办?
指出:在实际生产、生活、工作中,为了便于统计和比较,通常把这样的分数用分母是100的分数来表示。
把表格中的分数改写成分母是100的分数。说说这些分数的意义。
揭示出百分数的意义。
2、百分数的读写法。
自学书上的有关内容。
把表格中的百分之几改写成百分数的形式,并说说意义。
练习:练习十九 4
练一练 1看到这些图形,你想到了什么数?
举例:说说准备资料中的百分数的意义。
折出百分数。
3、百分数和分数的比较。
下面的说法你认为对吗?
(1) “六年级男生人数是全年级总人数的57/100”,可以说成“六年级男生人数是全年级总人数的57%”。
(2) “学校十月份用纸13/100吨”,可以说成“学校十月份用纸13%吨”。
小结:百分数和分数的不同。
根据提供的信息说说百分数的意思,及从信息中你想到了什么。
说说自己的收获。
分数的意义教案 篇4
教学内容
苏教版九年义务教育六年制小学数学第十册第73~75页。
教学目标
1. 在初步认识分数的基础上,经历动手操作、自主探索、合作交流的过程,进一步理解分数的意义;弄清分子、分母、分数单位的含义;掌握分数的读写方法。
2. 培养初步的观察能力、动手操作能力、抽象概括能力和与同伴合作学习的意识。
教学过程
一、 创设情境,温故知新
1. 创设猜谜情境。
师:用以下成语各打一个数。
一分为二(1/2) 百里挑一(1/100)
七上八下(7/8) 十拿九稳(9/10)
[反思:以有趣的猜谜引入,增添了教学情趣,拓宽了学生视域,体现了学科之间的联系。]
2. 寻找认知起点。
师:(指1/2、1/100、7/8、9/10)这些都是什么数?除了这几个分数,你还知道其他的分数吗?请你在纸上写一个分数,并读给同桌听。
师:你已经知道了哪些有关分数的知识?
大多数学生知道分数各部分的名称,并且会读、写分数,有的学生还会计算同分母分数加减法,知道真分数和假分数。
师:你还想知道什么?
根据学生发言,揭示今天学习的内容:分数的意义。(板书课题)
[反思:通过简短的师生对话,摸清了学生的已有经验和知识基础,找准了教学的现实起点。]
二、 合作交流,探究意义
1. 操作。
师:1/2可以表示什么?为了便于大家研究,老师为每个小组提供了一些动手操作的材料:(一个圆片、一盒水彩笔、6只熊猫图、8朵花图等)请每人用拿到的材料来表示1/2。
学生操作后,小组交流,教师巡视并参与、指导小组讨论。
[反思:从学生的学习实际出发,为每一个学习小组提供了丰富的、有结构的学习材料,尊重了学生的差异,做到了人尽其才,材尽其用。让学生在小组内交流,保证每个学生都有表达的机会,使个体参与落到了实处。同时,学生在相互倾听、相互补充的过程中,能够不断丰富自己对分数的直观感受。教师参与讨论,可以了解小组讨论的真实情况,便于有效地指导小组合作,调控教学进程。]
2. 交流。
师:哪一组愿意来说说,你们是怎样表示1/2的?
生:我把这个圆片对折,其中的一份就是它的1/2。
师:还有哪些同学是运用对折方法表示1/2的?
每组的1号、2号、3号同学都把材料举了起来。
生:3只熊猫是6只熊猫的1/2。
生:4朵花是8朵花的1/2。
师:(指4号同学)你是怎样表示一盒水彩笔的1/2的?
生:一盒水彩笔有12枝,把这盒水彩笔平均分成2份,每份是6枝,6枝是这盒水彩笔的1/2。
师:每盒水彩笔的1/2都是6枝吗?为什么?
生:我用9枝表示这盒水彩笔的1/2,因为这盒水彩笔共有18枝。
师:刚才同学们用不同的材料表示了1/2,现在老师把你们说的用图表示出来(出示图:把一个圆平均分成2份,在每份中都写上1/2)。是不是这样?
[反思:面对各个小组众多的合作学习成果,选取一组作中心发言,节约了教学时间,提高了效率。把不同材料表示的1/2用直观图表示出来,有利于学生把握1/2的本质。]
3. 归纳。
师:刚才同学们在表示1/2的过程中,有什么相同的地方?(板书:平均分)有什么不同的地方?(分的材料不同)
师:有的是一个圆片,也就是一个物体,(板书:一个物体)也有的是一个计量单位,如1米长的绳子,(板书:一个计量单位)还有的是由几个物体组成的,如一盒水彩笔、6只熊猫、8朵花,我们称它们为一个整体。(板书:一个整体)你还知道哪些事物可以看作一个整体吗?
生:一个班级。
生:一摞本子。
……
师:一个物体、一个计量单位、一些物体组成的整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。(在“一个物体、一个计量单位、一个整体”上用彩色粉笔覆盖板书:单位“1”)
师:既然一个物体、一个计量单位、一个整体都可以看作单位“1”,那么我们刚才表示1/2的过程就可以概括成把单位“1”平均分成2份,表示这样一份的数就是1/2(板书)。1/2还可以表示什么?
……
师:只要把单位“1”平均分成2份,表示这样一份的数,都可以用1/2来表示。
[反思:对操作过程的回溯、反思、归纳、推演,使学生认识并理解了分数意义中的两个重要内涵:平均分和单位“1”。]
4. 拓展。
红
黄
蓝
(1) 出示:
师:红色部分用分数怎样表示?(1/3)黄色部分、蓝色部分呢?
生:都可以用1/3表示。
师:为什么都用1/3表示?
生:因为都是把这个长方形平均分成3份,表示这样的一份的数。
师:黄色部分和蓝色部分共占这个长方形的几分之几?(2/3)
(2) 出示:○○○●●●
师:请用分数表示3个红色的圆。
生:1/2。
生:3/6。
师:为什么同样是3个红色的圆,可以用两个不同的分数表示?你是怎样想的?
生:把6个圆平均分成2份,3个红色的圆是1份,占1/2。
生:把6个圆平均分成6份,3个红色的圆是3份,占3/6。
[反思:从1/2扩展到几分之一,从几分之一扩展到几分之几,学生对分数意义的认识变得更加丰富、厚实。用分数表示3个红色的圆,既有利于学生体会平均分的份数和表示的份数之间的关系,又为后继学习分数的基本性质作了铺垫。]
5. 概括。
师:我们通过动手操作表示了1/2,并且能根据图意说出相应的分数。知道了把单位“1”平均分成几份,表示这样一份的数就是几分之一,表示这样几份的数就是几分之几。那么,到底什么是分数呢?
生:把单位“1”平均分成几份,表示这样几份的数,叫做分数。
师:他说得完整吗?谁来补充?
生:把单位“1”平均分成几份,表示这样一份或几份的数,叫做分数。
师:打开书第74页,看书上是怎么说的。还有什么问题?
[反思:在学生对分数形成了丰富体验的基础上,教师通过问题及板书的引导,及时让学生概括分数的意义,教材的逻辑意义成功地转化为学生的心理意义。]
6. 解释。
师:(指1/100、7/8、9/10)根据分数的意义,你能说说这几个分数所表示的意义吗?(学生回答)
师:你能结合这几个分数说一说,分数的分子和分母各表示什么意思吗?
生:在一个分数中,分母表示平均分的份数,分子表示有这样的多少份。
师:把单位“1”平均分成若干份,表示这样一份的数,叫做“分数单位”。(板书:分数单位)
师:1/100的分数单位是什么?它有几个1/100?7/8、9/10呢?
指名回答后,同桌互相交流自己写的分数的意义及分数单位是什么。
[反思:在学生初步认识分数的意义之后,让学生由抽象回到具体,结合具体的分数解释意义,能深化学生对分数意义的认识。同时,在这一过程中,学生进一步感悟了分子、分母的意义。让学生同桌之间交流自己写的分数和分数单位,扩大了参与面,增加了练习量。]
三、 巩固反馈,深化理解
1. 书面练习。
完成练习十三第1~3题。
其中阴影部分不能用1/3表示。让学生猜测,可以用几分之几表示,并利用教科书第74页“练一练”第1题的图形,验证猜测是否正确。
[反思:这样处理,一方面用活教材,使分散的习题成为有机的整体,另一方面使学生体会到有时表面上没有平均分的图形也可以进一步细分,进而用分数表示,深化了对分数意义的认识,培养了思维的深刻性。]
2. 用分数解决实际问题。
(1) 请发过言的同学站起来,发过言的人数占全班人数的几分之几?
(2) 找一个未发言的同学站起来,问:你占小组人数的几分之几?占全班人数的几分之几?占全校人数的几分之几?同样是一个人,为什么表示的分数在变化?
(3) 现在发过言的人数占全班的几分之几?为什么变化了?
[反思:用分数解决实际问题的过程既是对课堂学习状况的调查,又是对课堂学习内容的升华。由于问题来自于学生的学习实际,既能有效地激发学生参与学习活动的热情,又对部分发言不够积极的学生进行了恰当的教育和引导。]
四、 课堂总结(略)